1887

Abstract

In our previous study, Pf0-1L, harbouring the IncP-7 carbazole-degradative plasmid pCAR1 : : , was shown to be undetectable within 5 days post-inoculation in carbazole-contaminated artificial freshwater microcosms containing several plasmid-free bacteria in addition to Pf0-1L(pCAR1 : : ). Fourteen days after the inoculation, carbazole degraders become detectable. Here, we revealed that these isolates were not pCAR1 transconjugants, but Pf0-1L(pCAR1 : : ) mutants, based on RFLP and BOX-A1R-based repetitive extragenic palindromic-PCR (BOX-PCR) analysis. Notably, the mutants displayed more rapid initiation of carbazole degradation than the parent strain Pf0-1L(pCAR1 : : ). The mutants were unable to degrade anthranilate due to a 163 bp deletion in the gene, which was overcome by their transformation with a wild-type -expressing plasmid. Quantitative RT-PCR analysis indicated that the transcriptional induction of carbazole-, anthranilate- and catechol-degradative genes was comparable in both parent and mutant strains. The deletion mutants became dominant in the artificial water microcosm. The mutation caused anthranilate to accumulate instead of catechol, a toxic compound for the parent strain, and may be beneficial to host survival in artificial microcosms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049064-0
2011-08-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2276.html?itemId=/content/journal/micro/10.1099/mic.0.049064-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1990; ). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  2. Bagdasarian M., Lurz R., Rückert B., Franklin F. C., Bagdasarian M. M., Frey J., Timmis K. N.. ( 1981; ). Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas . . Gene 16:, 237–247. [CrossRef].[PubMed].
    [Google Scholar]
  3. Compeau G., Al-Achi B. J., Platsouka E., Levy S. B.. ( 1988; ). Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. . Appl Environ Microbiol 54:, 2432–2438.[PubMed].
    [Google Scholar]
  4. Cowles C. E., Nichols N. N., Harwood C. S.. ( 2000; ). BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida . . J Bacteriol 182:, 6339–6346. [CrossRef].[PubMed].
    [Google Scholar]
  5. Harwood C. S., Parales R. E.. ( 1996; ). The β-ketoadipate pathway and the biology of self-identity. . Annu Rev Microbiol 50:, 553–590. [CrossRef].[PubMed].
    [Google Scholar]
  6. Heuer H., Krsek M., Baker P., Smalla K., Wellington E. M.. ( 1997; ). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. . Appl Environ Microbiol 63:, 3233–3241.[PubMed].
    [Google Scholar]
  7. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef].[PubMed].
    [Google Scholar]
  8. Maeda K., Nojiri H., Shintani M., Yoshida T., Habe H., Omori T.. ( 2003; ). Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676 . . J Mol Biol 326:, 21–33. [CrossRef].[PubMed].
    [Google Scholar]
  9. Miyakoshi M., Urata M., Habe H., Omori T., Yamane H., Nojiri H.. ( 2006; ). Differentiation of carbazole catabolic operons by replacement of the regulated promoter via transposition of an insertion sequence. . J Biol Chem 281:, 8450–8457. [CrossRef].[PubMed].
    [Google Scholar]
  10. Miyakoshi M., Nishida H., Shintani M., Yamane H., Nojiri H.. ( 2009; ). High-resolution mapping of plasmid transcriptomes in different host bacteria. . BMC Genomics 10:, 12. [CrossRef].[PubMed].
    [Google Scholar]
  11. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A., Fouts D. E., Gill S. R., Pop M. et al. ( 2002; ). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. . Environ Microbiol 4:, 799–808. [CrossRef].[PubMed].
    [Google Scholar]
  12. Nojiri H., Omori T.. ( 2007; ). Carbazole metabolism by Pseudomonads . . In Pseudomonas, vol. 5, pp. 107–145. Edited by Ramos J.-L., Filloux A... New York:: Springer;. [CrossRef].
    [Google Scholar]
  13. Nojiri H., Sekiguchi H., Maeda K., Urata M., Nakai S., Yoshida T., Habe H., Omori T.. ( 2001; ). Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10. . J Bacteriol 183:, 3663–3679. [CrossRef].[PubMed].
    [Google Scholar]
  14. Nojiri H., Shintani M., Omori T.. ( 2004; ). Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. . Appl Microbiol Biotechnol 64:, 154–174. [CrossRef].[PubMed].
    [Google Scholar]
  15. Nojiri H., Sota M., Shintani M.. ( 2009; ). Catabolic plasmids involved in the degradation of polycyclic aromatic hydrocarbons and heteroaromatic compounds. . In Microbial Megaplasmids, pp. 55–87. Edited by Schwarts E... New York:: Springer-Verlag;. [CrossRef].
    [Google Scholar]
  16. Ogawa N., Chakrabarty A. M., Zaborina O.. ( 2004; ). Degradative plasmids. . In Plasmid Biology, pp. 341–376. Edited by Funnell E., Philips G. J... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Ouchiyama N., Zhang Y., Omori T., Kodama T.. ( 1993; ). Biodegradation of carbazole by Pseudomonas spp. CA06 and CA10. . Biosci Biotechnol Biochem 57:, 455–460. [CrossRef]
    [Google Scholar]
  18. Park W., Jeon C. O., Cadillo H., DeRito C., Madsen E. L.. ( 2004; ). Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites. . Appl Microbiol Biotechnol 64:, 429–435. [CrossRef].[PubMed].
    [Google Scholar]
  19. Sambrook J., Russell D. W.. ( 2001; ). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  20. Shintani M., Habe H., Tsuda M., Omori T., Yamane H., Nojiri H.. ( 2005a; ). Recipient range of IncP-7 conjugative plasmid pCAR2 from Pseudomonas putida HS01 is broader than from other Pseudomonas strains. . Biotechnol Lett 27:, 1847–1853. [CrossRef].[PubMed].
    [Google Scholar]
  21. Shintani M., Yoshida T., Habe H., Omori T., Nojiri H.. ( 2005b; ). Large plasmid pCAR2 and class II transposon Tn4676 are functional mobile genetic elements to distribute the carbazole/dioxin-degradative car gene cluster in different bacteria. . Appl Microbiol Biotechnol 67:, 370–382. [CrossRef].[PubMed].
    [Google Scholar]
  22. Shintani M., Yano H., Habe H., Omori T., Yamane H., Tsuda M., Nojiri H.. ( 2006; ). Characterization of the replication, maintenance, and transfer features of the IncP-7 plasmid pCAR1, which carries genes involved in carbazole and dioxin degradation. . Appl Environ Microbiol 72:, 3206–3216. [CrossRef].[PubMed].
    [Google Scholar]
  23. Shintani M., Fukushima N., Tezuka M., Yamane H., Nojiri H.. ( 2008a; ). Conjugative transfer of the IncP-7 carbazole degradative plasmid, pCAR1, in river water samples. . Biotechnol Lett 30:, 117–122. [CrossRef].[PubMed].
    [Google Scholar]
  24. Shintani M., Matsui K., Takemura T., Yamane H., Nojiri H.. ( 2008b; ). Behavior of the IncP-7 carbazole-degradative plasmid pCAR1 in artificial environmental samples. . Appl Microbiol Biotechnol 80:, 485–497. [CrossRef].[PubMed].
    [Google Scholar]
  25. Shintani M., Takahashi Y., Yamane H., Nojiri H.. ( 2010a; ). The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. . Microbes Environ 25:, 253–265. [CrossRef].[PubMed].
    [Google Scholar]
  26. Shintani M., Yamane H., Nojiri H.. ( 2010b; ). Behavior of various hosts of the IncP-7 carbazole-degradative plasmid pCAR1 in artificial microcosms. . Biosci Biotechnol Biochem 74:, 343–349. [CrossRef].[PubMed].
    [Google Scholar]
  27. Silby M. W., Cerdeño-Tárraga A. M., Vernikos G. S., Giddens S. R., Jackson R. W., Preston G. M., Zhang X. X., Moon C. D., Gehrig S. M. et al. ( 2009; ). Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens . . Genome Biol 10:, R51. [CrossRef].[PubMed].
    [Google Scholar]
  28. Simon R., Priefer U., Pühler A.. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. . Biotechnology 1:, 784–791. [CrossRef].
    [Google Scholar]
  29. Takahashi Y., Shintani M., Li L., Yamane H., Nojiri H.. ( 2009a; ). Carbazole-degradative IncP-7 plasmid pCAR1.2 is structurally unstable in Pseudomonas fluorescens Pf0-1, which accumulates catechol, the intermediate of the carbazole degradation pathway. . Appl Environ Microbiol 75:, 3920–3929. [CrossRef].[PubMed].
    [Google Scholar]
  30. Takahashi Y., Shintani M., Yamane H., Nojiri H.. ( 2009b; ). The complete nucleotide sequence of pCAR2: pCAR2 and pCAR1 were structurally identical IncP-7 carbazole degradative plasmids. . Biosci Biotechnol Biochem 73:, 744–746. [CrossRef].[PubMed].
    [Google Scholar]
  31. Urata M., Miyakoshi M., Kai S., Maeda K., Habe H., Omori T., Yamane H., Nojiri H.. ( 2004; ). Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2-dioxygenase, on the carbazole-degradative plasmid pCAR1 of Pseudomonas resinovorans strain CA10. . J Bacteriol 186:, 6815–6823. [CrossRef].[PubMed].
    [Google Scholar]
  32. Versalovic J., Schneider M., de Bruijn F. J., Lupski J. R.. ( 1994; ). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. . Methods Mol Cell Biol 5:, 25–40.
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed].
    [Google Scholar]
  34. Williams P. A., Jones R. M., Zylstra G.. ( 2004; ). Genomics of catabolic plasmids. . In Pseudomonas, vol. 1, pp. 165–195. Edited by Ramos J. L... New York:: Kluwer Academic/Plenum Publishers;. [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049064-0
Loading
/content/journal/micro/10.1099/mic.0.049064-0
Loading

Data & Media loading...

Supplements

Locations of the probes identified as a deleted DNA region [PDF](39 KB)

PDF

[PDF](38 KB)

PDF

[PDF](23 KB)

PDF

[PDF](284 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error