1887

Abstract

In our previous study, Pf0-1L, harbouring the IncP-7 carbazole-degradative plasmid pCAR1 : : , was shown to be undetectable within 5 days post-inoculation in carbazole-contaminated artificial freshwater microcosms containing several plasmid-free bacteria in addition to Pf0-1L(pCAR1 : : ). Fourteen days after the inoculation, carbazole degraders become detectable. Here, we revealed that these isolates were not pCAR1 transconjugants, but Pf0-1L(pCAR1 : : ) mutants, based on RFLP and BOX-A1R-based repetitive extragenic palindromic-PCR (BOX-PCR) analysis. Notably, the mutants displayed more rapid initiation of carbazole degradation than the parent strain Pf0-1L(pCAR1 : : ). The mutants were unable to degrade anthranilate due to a 163 bp deletion in the gene, which was overcome by their transformation with a wild-type -expressing plasmid. Quantitative RT-PCR analysis indicated that the transcriptional induction of carbazole-, anthranilate- and catechol-degradative genes was comparable in both parent and mutant strains. The deletion mutants became dominant in the artificial water microcosm. The mutation caused anthranilate to accumulate instead of catechol, a toxic compound for the parent strain, and may be beneficial to host survival in artificial microcosms.

Funding
This study was supported by the:
  • Program for Promotion of Basic Research Activities for Innovative Biosciences
  • PROBRAIN
  • RIKEN
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049064-0
2011-08-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2276.html?itemId=/content/journal/micro/10.1099/mic.0.049064-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) ( 1990). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Bagdasarian M., Lurz R., Rückert B., Franklin F. C., Bagdasarian M. M., Frey J., Timmis K. N. ( 1981). Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas . Gene 16:237–247 [View Article][PubMed]
    [Google Scholar]
  3. Compeau G., Al-Achi B. J., Platsouka E., Levy S. B. ( 1988). Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl Environ Microbiol 54:2432–2438[PubMed]
    [Google Scholar]
  4. Cowles C. E., Nichols N. N., Harwood C. S. ( 2000). BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida . J Bacteriol 182:6339–6346 [View Article][PubMed]
    [Google Scholar]
  5. Harwood C. S., Parales R. E. ( 1996). The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590 [View Article][PubMed]
    [Google Scholar]
  6. Heuer H., Krsek M., Baker P., Smalla K., Wellington E. M. ( 1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241[PubMed]
    [Google Scholar]
  7. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  8. Maeda K., Nojiri H., Shintani M., Yoshida T., Habe H., Omori T. ( 2003). Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676 . J Mol Biol 326:21–33 [View Article][PubMed]
    [Google Scholar]
  9. Miyakoshi M., Urata M., Habe H., Omori T., Yamane H., Nojiri H. ( 2006). Differentiation of carbazole catabolic operons by replacement of the regulated promoter via transposition of an insertion sequence. J Biol Chem 281:8450–8457 [View Article][PubMed]
    [Google Scholar]
  10. Miyakoshi M., Nishida H., Shintani M., Yamane H., Nojiri H. ( 2009). High-resolution mapping of plasmid transcriptomes in different host bacteria. BMC Genomics 10:12 [View Article][PubMed]
    [Google Scholar]
  11. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A., Fouts D. E., Gill S. R., Pop M. et al. ( 2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808 [View Article][PubMed]
    [Google Scholar]
  12. Nojiri H., Omori T. ( 2007). Carbazole metabolism by Pseudomonads . Pseudomonas vol. 5107–145 Ramos J.-L., Filloux A. New York: Springer; [View Article]
    [Google Scholar]
  13. Nojiri H., Sekiguchi H., Maeda K., Urata M., Nakai S., Yoshida T., Habe H., Omori T. ( 2001). Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10. J Bacteriol 183:3663–3679 [View Article][PubMed]
    [Google Scholar]
  14. Nojiri H., Shintani M., Omori T. ( 2004). Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64:154–174 [View Article][PubMed]
    [Google Scholar]
  15. Nojiri H., Sota M., Shintani M. ( 2009). Catabolic plasmids involved in the degradation of polycyclic aromatic hydrocarbons and heteroaromatic compounds. Microbial Megaplasmids55–87 Schwarts E. New York: Springer-Verlag; [View Article]
    [Google Scholar]
  16. Ogawa N., Chakrabarty A. M., Zaborina O. ( 2004). Degradative plasmids. Plasmid Biology341–376 Funnell E., Philips G. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Ouchiyama N., Zhang Y., Omori T., Kodama T. ( 1993). Biodegradation of carbazole by Pseudomonas spp. CA06 and CA10. Biosci Biotechnol Biochem 57:455–460 [View Article]
    [Google Scholar]
  18. Park W., Jeon C. O., Cadillo H., DeRito C., Madsen E. L. ( 2004). Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites. Appl Microbiol Biotechnol 64:429–435 [View Article][PubMed]
    [Google Scholar]
  19. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Shintani M., Habe H., Tsuda M., Omori T., Yamane H., Nojiri H. ( 2005a). Recipient range of IncP-7 conjugative plasmid pCAR2 from Pseudomonas putida HS01 is broader than from other Pseudomonas strains. Biotechnol Lett 27:1847–1853 [View Article][PubMed]
    [Google Scholar]
  21. Shintani M., Yoshida T., Habe H., Omori T., Nojiri H. ( 2005b). Large plasmid pCAR2 and class II transposon Tn4676 are functional mobile genetic elements to distribute the carbazole/dioxin-degradative car gene cluster in different bacteria. Appl Microbiol Biotechnol 67:370–382 [View Article][PubMed]
    [Google Scholar]
  22. Shintani M., Yano H., Habe H., Omori T., Yamane H., Tsuda M., Nojiri H. ( 2006). Characterization of the replication, maintenance, and transfer features of the IncP-7 plasmid pCAR1, which carries genes involved in carbazole and dioxin degradation. Appl Environ Microbiol 72:3206–3216 [View Article][PubMed]
    [Google Scholar]
  23. Shintani M., Fukushima N., Tezuka M., Yamane H., Nojiri H. ( 2008a). Conjugative transfer of the IncP-7 carbazole degradative plasmid, pCAR1, in river water samples. Biotechnol Lett 30:117–122 [View Article][PubMed]
    [Google Scholar]
  24. Shintani M., Matsui K., Takemura T., Yamane H., Nojiri H. ( 2008b). Behavior of the IncP-7 carbazole-degradative plasmid pCAR1 in artificial environmental samples. Appl Microbiol Biotechnol 80:485–497 [View Article][PubMed]
    [Google Scholar]
  25. Shintani M., Takahashi Y., Yamane H., Nojiri H. ( 2010a). The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. Microbes Environ 25:253–265 [View Article][PubMed]
    [Google Scholar]
  26. Shintani M., Yamane H., Nojiri H. ( 2010b). Behavior of various hosts of the IncP-7 carbazole-degradative plasmid pCAR1 in artificial microcosms. Biosci Biotechnol Biochem 74:343–349 [View Article][PubMed]
    [Google Scholar]
  27. Silby M. W., Cerdeño-Tárraga A. M., Vernikos G. S., Giddens S. R., Jackson R. W., Preston G. M., Zhang X. X., Moon C. D., Gehrig S. M. et al. ( 2009). Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens . Genome Biol 10:R51 [View Article][PubMed]
    [Google Scholar]
  28. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1:784–791 [View Article]
    [Google Scholar]
  29. Takahashi Y., Shintani M., Li L., Yamane H., Nojiri H. ( 2009a). Carbazole-degradative IncP-7 plasmid pCAR1.2 is structurally unstable in Pseudomonas fluorescens Pf0-1, which accumulates catechol, the intermediate of the carbazole degradation pathway. Appl Environ Microbiol 75:3920–3929 [View Article][PubMed]
    [Google Scholar]
  30. Takahashi Y., Shintani M., Yamane H., Nojiri H. ( 2009b). The complete nucleotide sequence of pCAR2: pCAR2 and pCAR1 were structurally identical IncP-7 carbazole degradative plasmids. Biosci Biotechnol Biochem 73:744–746 [View Article][PubMed]
    [Google Scholar]
  31. Urata M., Miyakoshi M., Kai S., Maeda K., Habe H., Omori T., Yamane H., Nojiri H. ( 2004). Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2-dioxygenase, on the carbazole-degradative plasmid pCAR1 of Pseudomonas resinovorans strain CA10. J Bacteriol 186:6815–6823 [View Article][PubMed]
    [Google Scholar]
  32. Versalovic J., Schneider M., de Bruijn F. J., Lupski J. R. ( 1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. ( 1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  34. Williams P. A., Jones R. M., Zylstra G. ( 2004). Genomics of catabolic plasmids. Pseudomonas vol. 1165–195 Ramos J. L. New York: Kluwer Academic/Plenum Publishers; [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049064-0
Loading
/content/journal/micro/10.1099/mic.0.049064-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error