1887

Abstract

The bacterial phytochrome of (BphP) is an -active red/far-red light sensor histidine kinase of a two-component regulatory system. Despite solid biochemical data, its function in this heterotrophic, opportunistic pathogen is still unknown. Previous studies established that the genes encoding the two necessary phytochrome components BphO, a chromophore-producing haem oxygenase, and BphP, the apo-phytochrome, are co-transcribed in a bicistronic operon. Transcription has been shown to be induced in the stationary phase and to be dependent on the alternative sigma factor RpoS. Here we show an additional regulation of expression through the quorum-sensing (QS) regulator LasR. This regulation is also reflected in a combination of expression profile experiments and proteome analyses of wild-type and phytochrome-deficient strains. While BphP has a pleiotropic effect on global gene expression, 66 % of the downregulated genes in the phytochrome mutant display a link to the Las QS system. Most of these genes seem to be indirectly regulated by LasR through BphP and the unknown response regulator BphR. A model of phytochrome function within the Las QS network is presented.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049007-0
2011-06-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1651.html?itemId=/content/journal/micro/10.1099/mic.0.049007-0&mimeType=html&fmt=ahah

References

  1. Arevalo-Ferro C., Hentzer M., Reil G., Görg A., Kjelleberg S., Givskov M., Riedel K., Eberl L.. ( 2003;). Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. . Environ Microbiol 5:, 1350–1369. [CrossRef].[PubMed]
    [Google Scholar]
  2. Aspedon A., Palmer K., Whiteley M.. ( 2006;). Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. . J Bacteriol 188:, 2721–2725. [CrossRef].[PubMed]
    [Google Scholar]
  3. Atichartpongkul S., Loprasert S., Vattanaviboon P., Whangsuk W., Helmann J. D., Mongkolsuk S.. ( 2001;). Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. . Microbiology 147:, 1775–1782.[PubMed]
    [Google Scholar]
  4. Baldi P., Long A. D.. ( 2001;). A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. . Bioinformatics 17:, 509–519. [CrossRef].[PubMed]
    [Google Scholar]
  5. Barkovits K., Harms A., Benkartek C., Smart J. L., Frankenberg-Dinkel N.. ( 2008;). Expression of the phytochrome operon in Pseudomonas aeruginosa is dependent on the alternative sigma factor RpoS. . FEMS Microbiol Lett 280:, 160–168. [CrossRef].[PubMed]
    [Google Scholar]
  6. Beatson S. A., Whitchurch C. B., Semmler A. B., Mattick J. S.. ( 2002;). Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. . J Bacteriol 184:, 3598–3604. [CrossRef].[PubMed]
    [Google Scholar]
  7. Becher A., Schweizer H. P.. ( 2000;). Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. . Biotechniques 29:, 948–950, 952.[PubMed]
    [Google Scholar]
  8. Bhoo S. H., Davis S. J., Walker J., Karniol B., Vierstra R. D.. ( 2001;). Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. . Nature 414:, 776–779. [CrossRef].[PubMed]
    [Google Scholar]
  9. Blumenstein A., Vienken K., Tasler R., Purschwitz J., Veith D., Frankenberg-Dinkel N., Fischer R.. ( 2005;). The Aspergillus nidulans phytochrome FphA represses sexual development in red light. . Curr Biol 15:, 1833–1838. [CrossRef].[PubMed]
    [Google Scholar]
  10. Bolstad B. M., Irizarry R. A., Astrand M., Speed T. P.. ( 2003;). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. . Bioinformatics 19:, 185–193. [CrossRef].[PubMed]
    [Google Scholar]
  11. Camilli A., Bassler B. L.. ( 2006;). Bacterial small-molecule signaling pathways. . Science 311:, 1113–1116. [CrossRef].[PubMed]
    [Google Scholar]
  12. Cao H., Baldini R. L., Rahme L. G.. ( 2001;). Common mechanisms for pathogens of plants and animals. . Annu Rev Phytopathol 39:, 259–284. [CrossRef].[PubMed]
    [Google Scholar]
  13. Chen M., Chory J., Fankhauser C.. ( 2004;). Light signal transduction in higher plants. . Annu Rev Genet 38:, 87–117. [CrossRef].[PubMed]
    [Google Scholar]
  14. Chory J., Chatterjee M., Cook R. K., Elich T., Fankhauser C., Li J., Nagpal P., Neff M., Pepper A. et al. ( 1996;). From seed germination to flowering, light controls plant development via the pigment phytochrome. . Proc Natl Acad Sci U S A 93:, 12066–12071. [CrossRef].[PubMed]
    [Google Scholar]
  15. Conter A., Gangneux C., Suzanne M., Gutierrez C.. ( 2001;). Survival of Escherichia coli during long-term starvation: effects of aeration, NaCl, and the rpoS and osmC gene products. . Res Microbiol 152:, 17–26. [CrossRef].[PubMed]
    [Google Scholar]
  16. Davis S. J., Vener A. V., Vierstra R. D.. ( 1999;). Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. . Science 286:, 2517–2520. [CrossRef].[PubMed]
    [Google Scholar]
  17. de Kievit T. R., Iglewski B. H.. ( 2000;). Bacterial quorum sensing in pathogenic relationships. . Infect Immun 68:, 4839–4849. [CrossRef].[PubMed]
    [Google Scholar]
  18. de Lorenzo V., Timmis K. N.. ( 1994;). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. . Methods Enzymol 235:, 386–405. [CrossRef].[PubMed]
    [Google Scholar]
  19. Dubern J. F., Diggle S. P.. ( 2008;). Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. . Mol Biosyst 4:, 882–888. [CrossRef].[PubMed]
    [Google Scholar]
  20. Dunn N. W., Holloway B. W.. ( 1971;). Pleiotrophy of p-fluorophenylalanine-resistant and antibiotic hypersensitive mutants of Pseudomonas aeruginosa. . Genet Res 18:, 185–197. [CrossRef].[PubMed]
    [Google Scholar]
  21. Eymann C., Dreisbach A., Albrecht D., Bernhardt J., Becher D., Gentner S., Tam T., Büttner K., Buurman G. et al. ( 2004;). A comprehensive proteome map of growing Bacillus subtilis cells. . Proteomics 4:, 2849–2876. [CrossRef].[PubMed]
    [Google Scholar]
  22. Firoved A. M., Deretic V.. ( 2003;). Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. . J Bacteriol 185:, 1071–1081. [CrossRef].[PubMed]
    [Google Scholar]
  23. Froehlich A. C., Noh B., Vierstra R. D., Loros J., Dunlap J. C.. ( 2005;). Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. . Eukaryot Cell 4:, 2140–2152. [CrossRef].[PubMed]
    [Google Scholar]
  24. Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y. et al. ( 2004;). Bioconductor: open software development for computational biology and bioinformatics. . Genome Biol 5:, R80. [CrossRef].[PubMed]
    [Google Scholar]
  25. Gilbert K. B., Kim T. H., Gupta R., Greenberg E. P., Schuster M.. ( 2009;). Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. . Mol Microbiol 73:, 1072–1085. [CrossRef].[PubMed]
    [Google Scholar]
  26. Giraud E., Fardoux J., Fourrier N., Hannibal L., Genty B., Bouyer P., Dreyfus B., Verméglio A.. ( 2002;). Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. . Nature 417:, 202–205. [CrossRef].[PubMed]
    [Google Scholar]
  27. Giraud E., Zappa S., Vuillet L., Adriano J. M., Hannibal L., Fardoux J., Berthomieu C., Bouyer P., Pignol D., Verméglio A.. ( 2005;). A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. . J Biol Chem 280:, 32389–32397. [CrossRef].[PubMed]
    [Google Scholar]
  28. Gutierrez C., Devedjian J. C.. ( 1991;). Osmotic induction of gene osmC expression in Escherichia coli K12. . J Mol Biol 220:, 959–973. [CrossRef].[PubMed]
    [Google Scholar]
  29. Gutierrez C., Gordia S., Bonnassie S.. ( 1995;). Characterization of the osmotically inducible gene osmE of Escherichia coli K-12. . Mol Microbiol 16:, 553–563. [CrossRef].[PubMed]
    [Google Scholar]
  30. Hanahan D.. ( 1983;). Studies on transformation of Escherichia coli with plasmids. . J Mol Biol 166:, 557–580. [CrossRef].[PubMed]
    [Google Scholar]
  31. Hatfield G. W., Hung S. P., Baldi P.. ( 2003;). Differential analysis of DNA microarray gene expression data. . Mol Microbiol 47:, 871–877. [CrossRef].[PubMed]
    [Google Scholar]
  32. Häussler S., Becker T.. ( 2008;). The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. . PLoS Pathog 4:, e1000166. [CrossRef].[PubMed]
    [Google Scholar]
  33. He J., Baldini R. L., Déziel E., Saucier M., Zhang Q., Liberati N. T., Lee D., Urbach J., Goodman H. M., Rahme L. G.. ( 2004;). The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. . Proc Natl Acad Sci U S A 101:, 2530–2535. [CrossRef].[PubMed]
    [Google Scholar]
  34. Hengge-Aronis R.. ( 2000;). The general stress response in Escherichia coli. . In Bacterial Stress Responses, pp. 161–178. Edited by Storz G., Hengge-Aronis R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  35. Hentzer M., Wu H., Andersen J. B., Riedel K., Rasmussen T. B., Bagge N., Kumar N., Schembri M. A., Song Z. et al. ( 2003;). Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. . EMBO J 22:, 3803–3815. [CrossRef].[PubMed]
    [Google Scholar]
  36. Hentzer M., Eberl L., Givskov M.. ( 2005;). Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. . Biofilms 2:, 37–61. [CrossRef]
    [Google Scholar]
  37. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. ( 1998;). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. . Gene 212:, 77–86. [CrossRef].[PubMed]
    [Google Scholar]
  38. Hübschmann T., Yamamoto H., Gieler T., Murata N., Börner T.. ( 2005;). Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC 6803: impact of cyanobacterial phytochromes. . FEBS Lett 579:, 1613–1618. [CrossRef].[PubMed]
    [Google Scholar]
  39. Hung S. P., Baldi P., Hatfield G. W.. ( 2002;). Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. . J Biol Chem 277:, 40309–40323. [CrossRef].[PubMed]
    [Google Scholar]
  40. Irizarry R. A., Bolstad B. M., Collin F., Cope L. M., Hobbs B., Speed T. P.. ( 2003;a). Summaries of Affymetrix GeneChip probe level data. . Nucleic Acids Res 31:, e15. [CrossRef].[PubMed]
    [Google Scholar]
  41. Irizarry R. A., Hobbs B., Collin F., Beazer-Barclay Y. D., Antonellis K. J., Scherf U., Speed T. P.. ( 2003;b). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. . Biostatistics 4:, 249–264. [CrossRef].[PubMed]
    [Google Scholar]
  42. Ishihama A.. ( 2010;). Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. . FEMS Microbiol Rev 34:, 628–645.[PubMed]
    [Google Scholar]
  43. Kang Y., Nguyen D. T., Son M. S., Hoang T. T.. ( 2008;). The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 β-oxidation operon. . Microbiology 154:, 1584–1598. [CrossRef].[PubMed]
    [Google Scholar]
  44. Kojic M., Jovcic B., Vindigni A., Odreman F., Venturi V.. ( 2005;). Novel target genes of PsrA transcriptional regulator of Pseudomonas aeruginosa. . FEMS Microbiol Lett 246:, 175–181. [CrossRef].[PubMed]
    [Google Scholar]
  45. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef].[PubMed]
    [Google Scholar]
  46. Kromina K., Ignatov A., Abdeeva I.. ( 2008;). Role of peptidyl-prolyl-cis/trans-isomerases in pathologic processes. . Biochemistry (Moscow): Supplemental Series A: Membrane and Cell Biology 2:, 195–202.
    [Google Scholar]
  47. Lacour S., Landini P.. ( 2004;). σS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of σS-dependent genes and identification of their promoter sequences. . J Bacteriol 186:, 7186–7195. [CrossRef].[PubMed]
    [Google Scholar]
  48. Lamanda A., Zahn A., Röder D., Langen H.. ( 2004;). Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal-to-background ratio and improved baseline resolution. . Proteomics 4:, 599–608. [CrossRef].[PubMed]
    [Google Scholar]
  49. Lamparter T.. ( 2006;). A computational approach to discovering the functions of bacterial phytochromes by analysis of homolog distributions. . BMC Bioinformatics 7:, 141. [CrossRef].[PubMed]
    [Google Scholar]
  50. Lamparter T., Michael N., Mittmann F., Esteban B.. ( 2002;). Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. . Proc Natl Acad Sci U S A 99:, 11628–11633. [CrossRef].[PubMed]
    [Google Scholar]
  51. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A.. ( 1996;). A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. . Mol Microbiol 21:, 1137–1146. [CrossRef].[PubMed]
    [Google Scholar]
  52. Li L., Lagarias J. C.. ( 1992;). Phytochrome assembly. Defining chromophore structural requirements for covalent attachment and photoreversibility. . J Biol Chem 267:, 19204–19210.[PubMed]
    [Google Scholar]
  53. Liechty A., Chen J., Jain M. K.. ( 2000;). Origin of antibacterial stasis by polymyxin B in Escherichia coli. . Biochim Biophys Acta 1463:, 55–64. [CrossRef].[PubMed]
    [Google Scholar]
  54. Medina G., Juárez K., Díaz R., Soberón-Chávez G.. ( 2003;). Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. . Microbiology 149:, 3073–3081. [CrossRef].[PubMed]
    [Google Scholar]
  55. Miller J. H.. ( 1972;). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  56. Montgomery B. L., Lagarias J. C.. ( 2002;). Phytochrome ancestry: sensors of bilins and light. . Trends Plant Sci 7:, 357–366. [CrossRef].[PubMed]
    [Google Scholar]
  57. Münch R., Hiller K., Barg H., Heldt D., Linz S., Wingender E., Jahn D.. ( 2003;). PRODORIC: prokaryotic database of gene regulation. . Nucleic Acids Res 31:, 266–269. [CrossRef].[PubMed]
    [Google Scholar]
  58. Oberpichler I., Molina I., Neubauer O., Lamparter T.. ( 2006;). Phytochromes from Agrobacterium tumefaciens: difference spectroscopy with extracts of wild type and knockout mutants. . FEBS Lett 580:, 437–442. [CrossRef].[PubMed]
    [Google Scholar]
  59. Oh J.-T., Cajal Y., Skowronska E. M., Belkin S., Chen J., Van Dyk T. K., Sasser M., Jain M. K.. ( 2000;). Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli. . Biochim Biophys Acta 1463:, 43–54. [CrossRef].[PubMed]
    [Google Scholar]
  60. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H.. ( 1997;). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. . J Bacteriol 179:, 3127–3132.[PubMed]
    [Google Scholar]
  61. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H.. ( 1999;). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 96:, 11229–11234. [CrossRef].[PubMed]
    [Google Scholar]
  62. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. . Nucleic Acids Res 29:, e45. [CrossRef].[PubMed]
    [Google Scholar]
  63. Prithiviraj B., Weir T., Bais H. P., Schweizer H. P., Vivanco J. M.. ( 2005;). Plant models for animal pathogenesis. . Cell Microbiol 7:, 315–324. [CrossRef].[PubMed]
    [Google Scholar]
  64. Ramakers C., Ruijter J. M., Deprez R. H., Moorman A. F.. ( 2003;). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. . Neurosci Lett 339:, 62–66. [CrossRef].[PubMed]
    [Google Scholar]
  65. Ratliff M., Zhu W., Deshmukh R., Wilks A., Stojiljkovic I.. ( 2001;). Homologues of neisserial heme oxygenase in Gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. . J Bacteriol 183:, 6394–6403. [CrossRef].[PubMed]
    [Google Scholar]
  66. Rockwell N. C., Su Y. S., Lagarias J. C.. ( 2006;). Phytochrome structure and signaling mechanisms. . Annu Rev Plant Biol 57:, 837–858. [CrossRef].[PubMed]
    [Google Scholar]
  67. Rodrigue A., Quentin Y., Lazdunski A., Méjean V., Foglino M.. ( 2000;). Two-component systems in Pseudomonas aeruginosa: why so many?. Trends Microbiol 8:, 498–504. [CrossRef].[PubMed]
    [Google Scholar]
  68. Schuster M., Greenberg E. P.. ( 2007;). Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. . BMC Genomics 8:, 287. [CrossRef].[PubMed]
    [Google Scholar]
  69. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P.. ( 2003;). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. . J Bacteriol 185:, 2066–2079. [CrossRef].[PubMed]
    [Google Scholar]
  70. Schuster M., Hawkins A. C., Harwood C. S., Greenberg E. P.. ( 2004;). The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. . Mol Microbiol 51:, 973–985. [CrossRef].[PubMed]
    [Google Scholar]
  71. Smith H.. ( 2000;). Phytochromes and light signal perception by plants – an emerging synthesis. . Nature 407:, 585–591. [CrossRef].[PubMed]
    [Google Scholar]
  72. Suh S. J., Silo-Suh L., Woods D. E., Hassett D. J., West S. E., Ohman D. E.. ( 1999;). Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. . J Bacteriol 181:, 3890–3897.[PubMed]
    [Google Scholar]
  73. Tasler R., Moises T., Frankenberg-Dinkel N.. ( 2005;). Biochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa. . FEBS J 272:, 1927–1936. [CrossRef].[PubMed]
    [Google Scholar]
  74. Trunk K., Benkert B., Quäck N., Münch R., Scheer M., Garbe J., Jänsch L., Trost M., Wehland J. et al. ( 2010;). Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. . Environ Microbiol 12:, 1719–1733. [CrossRef].[PubMed]
    [Google Scholar]
  75. Ventre I., Filloux A., Lazdunski A.. ( 2004;). Two-component signal transduction systems: A key to the adaptive potential of Pseudomonas aeruginosa. . In Pseudomonas, vol. 2, Virulence and Gene Regulation, pp. 257–288. Edited by Ramos J.-L... New York:: Kluwer Academic/Plenum Publishers;.
    [Google Scholar]
  76. Vinckx T., Wei Q., Matthijs S., Noben J. P., Daniels R., Cornelis P.. ( 2011;). A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation. . Biometals. [CrossRef].[PubMed]
    [Google Scholar]
  77. Wagner V. E., Iglewski B. H.. ( 2008;). P. aeruginosa biofilms in CF infection. . Clin Rev Allergy Immunol 35:, 124–134. [CrossRef].[PubMed]
    [Google Scholar]
  78. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H.. ( 2003;). Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. . J Bacteriol 185:, 2080–2095. [CrossRef].[PubMed]
    [Google Scholar]
  79. Waite R. D., Paccanaro A., Papakonstantinopoulou A., Hurst J. M., Saqi M., Littler E., Curtis M. A.. ( 2006;). Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. . BMC Genomics 7:, 162. [CrossRef].[PubMed]
    [Google Scholar]
  80. Wegele R., Tasler R., Zeng Y., Rivera M., Frankenberg-Dinkel N.. ( 2004;). The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. . J Biol Chem 279:, 45791–45802. [CrossRef].[PubMed]
    [Google Scholar]
  81. Whiteley M., Parsek M. R., Greenberg E. P.. ( 2000;). Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. . J Bacteriol 182:, 4356–4360. [CrossRef].[PubMed]
    [Google Scholar]
  82. Williams P., Cámara M.. ( 2009;). Quorum sensing and environmental adaptation inPseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. . Curr Opin Microbiol 12:, 182–191. [CrossRef].[PubMed]
    [Google Scholar]
  83. Wood J. M.. ( 1999;). Osmosensing by bacteria: signals and membrane-based sensors. . Microbiol Mol Biol Rev 63:, 230–262.[PubMed]
    [Google Scholar]
  84. Yeats C., Bateman A.. ( 2003;). The BON domain: a putative membrane-binding domain. . Trends Biochem Sci 28:, 352–355. [CrossRef].[PubMed]
    [Google Scholar]
  85. Yim H. H., Villarejo M.. ( 1992;). osmY, a new hyperosmotically inducible gene, encodes a periplasmic protein in Escherichia coli. . J Bacteriol 174:, 3637–3644.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049007-0
Loading
/content/journal/micro/10.1099/mic.0.049007-0
Loading

Data & Media loading...

Supplements

[PDF](62 KB)

PDF

[PDF](39 KB)

PDF

PQS production in wild-type and a D mutant [PDF](91 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error