1887

Abstract

Extensive studies of the well-known legume and rhizobium symbiosis model system suggest that the purine metabolic pathway plays a key role in microbe–plant interactions, although the exact mechanism is unknown. Here, we report the impact of a key purine metabolic gene, , on the symbiotic interaction between the bacterium and its nematode partner . Real-time PCR assays showed that the gene was upregulated in in the nematode infective juvenile compared with artificial media. Mutation of the gene by in-frame deletion dramatically decreased the capacity of the bacterium to persist in infective juveniles and its ability to form biofilm . It was further demonstrated that gene expression was positively related to bacterial biofilm formation and the symbiotic persistence of the bacterium in nematode infective juveniles. A Δ mutant lost the ability to support infective juvenile formation in the media which weakly supported biofilm formation, suggesting that a critical level of biofilm formation is required by the bacteria to support infective juvenile formation and thus establish their partnership. In addition, the defects in both biofilm formation and symbiotic ability due to the disruption of the gene could be partially restored by the addition of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an intermediate of the purine biosynthesis pathway. Overall, these data indicate that the purine metabolic pathway is important in microbe–animal symbioses, and that it may influence symbiotic interactions at the level of biofilm formation.

Funding
This study was supported by the:
  • Ohio Agricultural Research and Development Center
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048959-0
2011-09-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2595.html?itemId=/content/journal/micro/10.1099/mic.0.048959-0&mimeType=html&fmt=ahah

References

  1. Amos M. R., Sanchez-Contreras M., Jackson R. W., Muñoz-Berbel X., Ciche T. A., Yang G., Cooper R. M., Waterfield N. R. ( 2011). Influence of the Photorhabdus luminescens phosphomannose isomerase gene, manA, on mannose utilization, exopolysaccharide structure, and biofilm formation. Appl Environ Microbiol 77:776–785 [View Article][PubMed]
    [Google Scholar]
  2. An R., Grewal P. S. ( 2010). Molecular mechanisms of persistence of mutualistic bacteria Photorhabdus in the entomopathogenic nematode host. PLoS ONE 5:e13154 [View Article][PubMed]
    [Google Scholar]
  3. An R., Sreevatsan S., Grewal P. S. ( 2009). Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis. BMC Genomics 10:433 [View Article][PubMed]
    [Google Scholar]
  4. An R., Bai X., Grewal P. S. ( 2010). Reliable fusion PCR using Taq polymerases and pGEM-T easy vectors. World J Microbiol Biotechnol 27:727–730 [View Article]
    [Google Scholar]
  5. Bennett H. P., Clarke D. J. ( 2005). The pbgPE operon in Photorhabdus luminescens is required for pathogenicity and symbiosis. J Bacteriol 187:77–84 [View Article][PubMed]
    [Google Scholar]
  6. Bowen D., Rocheleau T. A., Blackburn M., Andreev O., Golubeva E., Bhartia R., ffrench-Constant R. H. ( 1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280:2129–2132 [View Article][PubMed]
    [Google Scholar]
  7. Buendía-Clavería A. M., Moussaid A., Ollero F. J., Vinardell J. M., Torres A., Moreno J., Gil-Serrano A. M., Rodríguez-Carvajal M. A., Tejero-Mateo P. et al. ( 2003). A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide. Microbiology 149:1807–1818 [View Article][PubMed]
    [Google Scholar]
  8. Ciche T. A., Kim K. S., Kaufmann-Daszczuk B., Nguyen K. C. Q., Hall D. H. ( 2008). Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 74:2275–2287 [View Article][PubMed]
    [Google Scholar]
  9. Clarke D. J. ( 2008). Photorhabdus: a model for the analysis of pathogenicity and mutualism. Cell Microbiol 10:2159–2167 [View Article][PubMed]
    [Google Scholar]
  10. Daborn P. J., Waterfield N., Blight M. A., ffrench-Constant R. H. ( 2001). Measuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescens in culture and during insect infection. J Bacteriol 183:5834–5839 [View Article][PubMed]
    [Google Scholar]
  11. Ge X. C., Kitten T., Chen Z. M., Lee S. P., Munro C. L., Xu P. ( 2008). Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence. Infect Immun 76:2551–2559 [View Article][PubMed]
    [Google Scholar]
  12. Giraud E., Moulin L., Vallenet D., Barbe V., Cytryn E., Avarre J. C., Jaubert M., Simon D., Cartieaux F. et al. ( 2007). Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312 [View Article][PubMed]
    [Google Scholar]
  13. Glaser L., Kornfeld S. ( 1961). The enzymatic synthesis of thymidine-linked sugars. II. Thymidine diphosphate l-rhamnose. J Biol Chem 236:1795–1799[PubMed]
    [Google Scholar]
  14. Glazer I. ( 2002). Survival biology. Entomopathogenic Nematology169–187 Gaugler R. New York: CABI Publishing; [View Article]
    [Google Scholar]
  15. Grewal P. S., Ehlers R. U., Shapiro-Ilan D. I. ( 2005). Nematodes as Biocontrol Agents Wallingford, UK: CABI Publishing; [View Article]
    [Google Scholar]
  16. Grewal P. S., Bai X., Jagdale G. B. ( 2011). Longevity and stress tolerance of entomopathogenic nematodes. Molecular and Physiological Basis of Nematode Survival157–181 Perry R. N., Wharton D. Wallingford, UK: CABI Publishing; [View Article]
    [Google Scholar]
  17. Hautefort I., Proença M. J., Hinton J. C. ( 2003). Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl Environ Microbiol 69:7480–7491 [View Article][PubMed]
    [Google Scholar]
  18. Jamoussi K., Sellami S., Abdelkefi-Mesrati L., Givaudan A., Jaoua S. ( 2009). Heterologous expression of Bacillus thuringiensis vegetative insecticidal protein-encoding gene vip3LB in Photorhabdus temperata strain K122 and oral toxicity against the lepidoptera Ephestia kuehniella and Spodoptera littoralis. Mol Biotechnol 43:97–103 [View Article][PubMed]
    [Google Scholar]
  19. Johnigk S. A., Ehlers R. U. ( 1999). Endotokia matricida in hermaphrodites of Heterorhabditis spp. and the effect of the food supply. Nematology 1:717–726 [View Article]
    [Google Scholar]
  20. Livak K. J., Schmittgen T. D. ( 2001). Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  21. Lunau S., Stoessel S., Schmidtpeisker A. J., Ehlers R. U. ( 1993). Establishment of monoxenic inocula for scaling-up in-vitro cultures of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis spp. Nematologica 39:385–399 [View Article]
    [Google Scholar]
  22. Mack D., Becker P., Chatterjee I., Dobinsky S., Knobloch J. K. M., Peters G., Rohde H., Herrmann M. ( 2004). Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 294:203–212 [View Article][PubMed]
    [Google Scholar]
  23. McFall-Ngai M. ( 2008). Are biologists in ‘future shock'? Symbiosis integrates biology across domains. Nat Rev Microbiol 6:789–792 [View Article][PubMed]
    [Google Scholar]
  24. Molloy S. ( 2007). Symbiotic exceptions. Nat Rev Microbiol 5:473 [View Article]
    [Google Scholar]
  25. Mracek Z., Gerdin S., Weiser J. ( 1981). Head and cuticular structure of some species in the family Steinernematidae (Nematoda). Nematologica 27:443–448 [View Article]
    [Google Scholar]
  26. Münch A., Stingl L., Jung K., Heermann R. ( 2008). Photorhabdus luminescens genes induced upon insect infection. BMC Genomics 9:229 [View Article][PubMed]
    [Google Scholar]
  27. O'Toole G. A., Kolter R. ( 1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [View Article][PubMed]
    [Google Scholar]
  28. Rinaudi L. V., Giordano W. ( 2010). An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11 [View Article][PubMed]
    [Google Scholar]
  29. Ruby E. G. ( 2008). Symbiotic conversations are revealed under genetic interrogation. Nat Rev Microbiol 6:752–762 [View Article][PubMed]
    [Google Scholar]
  30. Sampei G., Mizobuchi K. ( 1989). The organization of the purL gene encoding 5′-phosphoribosylformylglycinamide amidotransferase of Escherichia coli. J Biol Chem 264:21230–21238[PubMed]
    [Google Scholar]
  31. Somvanshi V. S., Kaufmann-Daszczuk B., Kim K. S., Mallon S., Ciche T. A. ( 2010). Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol Microbiol 77:1021–1038[PubMed]
    [Google Scholar]
  32. Szewczyk E., Nayak T., Oakley C. E., Edgerton H., Xiong Y., Taheri-Talesh N., Osmani S. A., Oakley B. R. ( 2006). Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 1:3111–3120 [View Article][PubMed]
    [Google Scholar]
  33. Tsai C. M., Frasch C. E. ( 1982). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119 [View Article][PubMed]
    [Google Scholar]
  34. Valdivia R. H., Falkow S. ( 1997). Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277:2007–2011 [View Article][PubMed]
    [Google Scholar]
  35. Xie B., Chen D. S., Zhou K., Xie Y. Q., Li Y. G., Hu G. Y., Zhou J. C. ( 2006). Symbiotic abilities of Sinorhizobium fredii with modified expression of purL. Appl Microbiol Biotechnol 71:505–514 [View Article][PubMed]
    [Google Scholar]
  36. Xie B., Chen D. S., Cheng G. J., Ying Z. Z., Xie F. L., Li Y. G., Zhou J. C. ( 2009). Effects of the purL gene expression level on the competitive nodulation ability of Sinorhizobium fredii. Curr Microbiol 59:193–198 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.048959-0
Loading
/content/journal/micro/10.1099/mic.0.048959-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error