1887

Abstract

The ability of serovars of to cause systemic disease is dependent upon their survival and replication within macrophages. To do this, bacteria must withstand or surmount bacteriostatic and bactericidal responses by the host cell, including the delivery of hydrolytic enzymes from lysosomes to the phagosome. The bacterial two-component regulatory system PhoP/Q has been implicated in avoidance of phagolysosomal fusion by serovar Typhimurium ( Typhimurium) in murine macrophages. In this study, the involvement of PhoP/Q-activated genes in avoidance of phagolysosomal fusion was analysed: of all the Typhimurium mutant strains tested, only an mutant strain partially reproduced the phenotype of the mutant strain. As this gene is required for bacterial growth in magnesium-depleted conditions , the contributions of PhoP/Q to intramacrophage replication and survival were reappraised. Although PhoP/Q was required for both replication and survival of Typhimurium within murine macrophages, subsequent analysis of the kinetics of phagolysosomal fusion, taking account of differences in the replication rates of wild-type and mutant strains, provided no evidence for a PhoP/Q-dependent role in this process. PhoP/Q appeared to act subsequent to the process of phagolysosomal avoidance and to promote replication of those bacteria that had already escaped a phagolysosomal fate. Therefore, we conclude that the PhoP/Q regulon enables . Typhimurium to adapt to intramacrophage stresses other than phagolysosomal fusion.

Funding
This study was supported by the:
  • MRC
  • Wellcome Trust
  • BBSRC
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048926-0
2011-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2084.html?itemId=/content/journal/micro/10.1099/mic.0.048926-0&mimeType=html&fmt=ahah

References

  1. Bearson B. L., Wilson L., Foster J. W. ( 1998). A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol 180:2409–2417[PubMed]
    [Google Scholar]
  2. Becken U., Jeschke A., Veltman K., Haas A. ( 2010). Cell-free fusion of bacteria-containing phagosomes with endocytic compartments. Proc Natl Acad Sci U S A 107:20726–20731 [View Article][PubMed]
    [Google Scholar]
  3. Beuzón C. R., Banks G., Deiwick J., Hensel M., Holden D. W. ( 1999). pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium . Mol Microbiol 33:806–816 [View Article][PubMed]
    [Google Scholar]
  4. Beuzón C. R., Méresse S., Unsworth K. E., Ruíz-Albert J., Garvis S., Waterman S. R., Ryder T. A., Boucrot E., Holden D. W. ( 2000). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19:3235–3249 [View Article][PubMed]
    [Google Scholar]
  5. Beuzón C. R., Salcedo S. P., Holden D. W. ( 2002). Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiology 148:2705–2715[PubMed]
    [Google Scholar]
  6. Blanc-Potard A. B., Groisman E. A. ( 1997). The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16:5376–5385 [View Article][PubMed]
    [Google Scholar]
  7. Brodsky I. E., Ernst R. K., Miller S. I., Falkow S. ( 2002). mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides. J Bacteriol 184:3203–3213 [View Article][PubMed]
    [Google Scholar]
  8. Buchmeier N. A., Heffron F. ( 1991). Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium . Infect Immun 59:2232–2238[PubMed]
    [Google Scholar]
  9. Craig M., Slauch J. M. ( 2009). Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella . PLoS ONE 4:e4975 [View Article][PubMed]
    [Google Scholar]
  10. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  11. De Groote M. A., Ochsner U. A., Shiloh M. U., Nathan C., McCord J. M., Dinauer M. C., Libby S. J., Vazquez-Torres A., Xu Y., Fang F. C. ( 1997). Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci U S A 94:13997–14001 [View Article][PubMed]
    [Google Scholar]
  12. Detweiler C. S., Monack D. M., Brodsky I. E., Mathew H., Falkow S. ( 2003). virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol Microbiol 48:385–400 [View Article][PubMed]
    [Google Scholar]
  13. Drecktrah D., Knodler L. A., Ireland R., Steele-Mortimer O. ( 2006). The mechanism of Salmonella entry determines the vacuolar environment and intracellular gene expression. Traffic 7:39–51 [View Article][PubMed]
    [Google Scholar]
  14. Garin J., Diez R., Kieffer S., Dermine J. F., Duclos S., Gagnon E., Sadoul R., Rondeau C., Desjardins M. ( 2001). The phagosome proteome: insight into phagosome functions. J Cell Biol 152:165–180 [View Article][PubMed]
    [Google Scholar]
  15. Garvis S. G., Beuzón C. R., Holden D. W. ( 2001). A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella-containing vacuoles in macrophages. Cell Microbiol 3:731–744 [View Article][PubMed]
    [Google Scholar]
  16. Ghosh P., Griffith J., Geuze H. J., Kornfeld S. ( 2003). Mammalian GGAs act together to sort mannose 6-phosphate receptors. J Cell Biol 163:755–766 [View Article][PubMed]
    [Google Scholar]
  17. Groisman E. A., Chiao E., Lipps C. J., Heffron F. ( 1989). Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci U S A 86:7077–7081 [View Article][PubMed]
    [Google Scholar]
  18. Günzel D., Kucharski L. M., Kehres D. G., Romero M. F., Maguire M. E. ( 2006). The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na+, K+-ATPase. J Bacteriol 188:5586–5594 [View Article][PubMed]
    [Google Scholar]
  19. Guo L., Lim K. B., Poduje C. M., Daniel M., Gunn J. S., Hackett M., Miller S. I. ( 1998). Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95:189–198 [View Article][PubMed]
    [Google Scholar]
  20. Hashim S., Mukherjee K., Raje M., Basu S. K., Mukhopadhyay A. ( 2000). Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes. J Biol Chem 275:16281–16288 [View Article][PubMed]
    [Google Scholar]
  21. Hébrard M., Viala J. P., Méresse S., Barras F., Aussel L. ( 2009). Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance. J Bacteriol 191:4605–4614 [View Article][PubMed]
    [Google Scholar]
  22. Helaine S., Thompson J. A., Watson K. G., Liu M., Boyle C., Holden D. W. ( 2010). Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A 107:3746–3751 [View Article][PubMed]
    [Google Scholar]
  23. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. ( 1995). Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403 [View Article][PubMed]
    [Google Scholar]
  24. Hiemstra P. S., Eisenhauer P. B., Harwig S. S., van den Barselaar M. T., van Furth R., Lehrer R. I. ( 1993). Antimicrobial proteins of murine macrophages. Infect Immun 61:3038–3046[PubMed]
    [Google Scholar]
  25. Hiemstra P. S., van den Barselaar M. T., Roest M., Nibbering P. H., van Furth R. ( 1999). Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages. J Leukoc Biol 66:423–428[PubMed]
    [Google Scholar]
  26. Hmiel S. P., Snavely M. D., Florer J. B., Maguire M. E., Miller C. G. ( 1989). Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171:4742–4751[PubMed]
    [Google Scholar]
  27. Jahreiss L., Menzies F. M., Rubinsztein D. C. ( 2008). The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9:574–587 [View Article][PubMed]
    [Google Scholar]
  28. Loessner H., Endmann A., Leschner S., Westphal K., Rohde M., Miloud T., Hämmerling G., Neuhaus K., Weiss S. ( 2007). Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of l-arabinose as inducer of bacterial gene expression in vivo. Cell Microbiol 9:1529–1537 [View Article][PubMed]
    [Google Scholar]
  29. Mastroeni P., Vazquez-Torres A., Fang F. C., Xu Y., Khan S., Hormaeche C. E., Dougan G. ( 2000). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192:237–248 [View Article][PubMed]
    [Google Scholar]
  30. Miller S. I., Kukral A. M., Mekalanos J. J. ( 1989). A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A 86:5054–5058 [View Article][PubMed]
    [Google Scholar]
  31. Mills P. C., Rowley G., Spiro S., Hinton J. C., Richardson D. J. ( 2008). A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology 154:1218–1228 [View Article][PubMed]
    [Google Scholar]
  32. Moncrief M. B., Maguire M. E. ( 1998). Magnesium and the role of MgtC in growth of Salmonella typhimurium . Infect Immun 66:3802–3809[PubMed]
    [Google Scholar]
  33. Mullock B. M., Bright N. A., Fearon C. W., Gray S. R., Luzio J. P. ( 1998). Fusion of lysosomes with late endosomes produces a hybrid organelle of intermediate density and is NSF dependent. J Cell Biol 140:591–601 [View Article][PubMed]
    [Google Scholar]
  34. Mullock B. M., Smith C. W., Ihrke G., Bright N. A., Lindsay M., Parkinson E. J., Brooks D. A., Parton R. G., James D. E. et al. ( 2000). Syntaxin 7 is localized to late endosome compartments, associates with Vamp 8, and is required for late endosome-lysosome fusion. Mol Biol Cell 11:3137–3153[PubMed] [CrossRef]
    [Google Scholar]
  35. Ochman H., Groisman E. A. ( 1996). Distribution of pathogenicity islands in Salmonella spp. Infect Immun 64:5410–5412[PubMed]
    [Google Scholar]
  36. Pryor P. R., Mullock B. M., Bright N. A., Gray S. R., Luzio J. P. ( 2000). The role of intraorganellar Ca2+ in late endosome–lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol 149:1053–1062 [View Article][PubMed]
    [Google Scholar]
  37. Rang C., Alix E., Felix C., Heitz A., Tasse L., Blanc-Potard A. B. ( 2007). Dual role of the MgtC virulence factor in host and non-host environments. Mol Microbiol 63:605–622 [View Article][PubMed]
    [Google Scholar]
  38. Rathman M., Sjaastad M. D., Falkow S. ( 1996). Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect Immun 64:2765–2773[PubMed]
    [Google Scholar]
  39. Rathman M., Barker L. P., Falkow S. ( 1997). The unique trafficking pattern of Salmonella typhimurium-containing phagosomes in murine macrophages is independent of the mechanism of bacterial entry. Infect Immun 65:1475–1485[PubMed]
    [Google Scholar]
  40. Rosenberger C. M., Gallo R. L., Finlay B. B. ( 2004). Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci U S A 101:2422–2427 [View Article][PubMed]
    [Google Scholar]
  41. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Schwan W. R., Huang X. Z., Hu L., Kopecko D. J. ( 2000). Differential bacterial survival, replication, and apoptosis-inducing ability of Salmonella serovars within human and murine macrophages. Infect Immun 68:1005–1013 [View Article][PubMed]
    [Google Scholar]
  43. Shea J. E., Beuzon C. R., Gleeson C., Mundy R., Holden D. W. ( 1999). Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect Immun 67:213–219[PubMed]
    [Google Scholar]
  44. Soncini F. C., García Véscovi E., Solomon F., Groisman E. A. ( 1996). Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol 178:5092–5099[PubMed]
    [Google Scholar]
  45. Sörensen M., Lippuner C., Kaiser T., Misslitz A., Aebischer T., Bumann D. ( 2003). Rapidly maturing red fluorescent protein variants with strongly enhanced brightness in bacteria. FEBS Lett 552:110–114 [View Article][PubMed]
    [Google Scholar]
  46. Testerman T. L., Vazquez-Torres A., Xu Y., Jones-Carson J., Libby S. J., Fang F. C. ( 2002). The alternative sigma factor σE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 43:771–782 [View Article][PubMed]
    [Google Scholar]
  47. Uchiya K., Barbieri M. A., Funato K., Shah A. H., Stahl P. D., Groisman E. A. ( 1999). A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18:3924–3933 [View Article][PubMed]
    [Google Scholar]
  48. Vazquez-Torres A., Jones-Carson J., Mastroeni P., Ischiropoulos H., Fang F. C. ( 2000a). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192:227–236 [View Article][PubMed]
    [Google Scholar]
  49. Vazquez-Torres A., Xu Y., Jones-Carson J., Holden D. W., Lucia S. M., Dinauer M. C., Mastroeni P., Fang F. C. ( 2000b). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655–1658 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048926-0
Loading
/content/journal/micro/10.1099/mic.0.048926-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error