1887

Abstract

We have found that FSS2, an infective endocarditis (IE) isolate, expresses a dipeptidyl-carboxypeptidase with activity homologous to angiotensin-converting enzyme (ACE). The carboxypeptidase activity was purified to homogeneity as a complex/aggregate from a bacterial surface extract and was also active as a 165 kDa monomer. The specific activity for the carboxypeptidase activity was eightfold higher than that for recombinant human ACE. Selected ACE inhibitors, captopril, lisinopril and enalapril, did not inhibit the ACE activity. The carboxypeptidase also hydrolysed the Aα and Bβ-chains of human fibrinogen, which resulted in impaired fibrin formation by thrombin. The gene encoding ACE carboxypeptidase activity was sequenced and the inferred polypeptide product showed 99 % amino acid homology to SGO_0566, , ‘challisin’ of CL1 Challis, and had no significant amino acid sequence homology to human ACE. Homologues of challisin ACE activity were commonly detected among the viridans group streptococci most often associated with IE.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048710-0
2011-07-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2143.html?itemId=/content/journal/micro/10.1099/mic.0.048710-0&mimeType=html&fmt=ahah

References

  1. Antikainen J., Kuparinen V., Lähteenmäki K., Korhonen T. K.. ( 2007;). pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol189:4539–4543 [CrossRef][PubMed]
    [Google Scholar]
  2. Barrau K., Boulamery A., Imbert G., Casalta J.-P., Habib G., Messana T., Bonnet J. L., Rubinstein E., Raoult D.. ( 2004;). Causative organisms of infective endocarditis according to host status. Clin Microbiol Infect10:302–308 [CrossRef][PubMed]
    [Google Scholar]
  3. Bensing B. A., López J. A., Sullam P. M.. ( 2004;). The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibα. Infect Immun72:6528–6537 [CrossRef][PubMed]
    [Google Scholar]
  4. Bernstein K. E., Shen X. Z., Gonzalez-Villalobos R. A., Billet S., Okwan-Duodu D., Ong F. S., Fuchs S.. ( 2011;). Different in vivo functions of the two catalytic domains of angiotensin-converting enzyme (ACE). Curr Opin Pharmacol11:105–111 [CrossRef][PubMed]
    [Google Scholar]
  5. Bondos S. E., Bicknell A.. ( 2003;). Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem316:223–231 [CrossRef][PubMed]
    [Google Scholar]
  6. Bonifait L., Vaillancourt K., Gottschalk M., Frenette M., Grenier D.. ( 2011;). Purification and characterization of the subtilisin-like protease of Streptococcus suis that contributes to its virulence. Vet Microbiol148:333–340 [CrossRef][PubMed]
    [Google Scholar]
  7. Carey R. M., Siragy H. M.. ( 2003;). Newly recognized components of the renin–angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev24:261–271 [CrossRef][PubMed]
    [Google Scholar]
  8. Chaudhuri B., Paju S., Haase E. M., Vickerman M. M., Tanzer J. M., Scannapieco F. A.. ( 2008;). Amylase-binding protein B of Streptococcus gordonii is an extracellular dipeptidyl-peptidase. Infect Immun76:4530–4537 [CrossRef][PubMed]
    [Google Scholar]
  9. Cork A. J., Jergic S., Hammerschmidt S., Kobe B., Pancholi V., Benesch J. L. P., Robinson C. V., Dixon N. E., Aquilina J. A., Walker M. J.. ( 2009;). Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J Biol Chem284:17129–17137 [CrossRef][PubMed]
    [Google Scholar]
  10. Davies J. R., Svensäter G., Herzberg M. C.. ( 2009;). Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii . Microbiology155:1977–1988 [CrossRef][PubMed]
    [Google Scholar]
  11. Deprèle C., Berthelot P., Lemetayer F., Comtet C., Fresard A., Cazorla C., Fascia P., Cathébras P., Chaumentin G. et al. ( 2004;). Risk factors for systemic emboli in infective endocarditis. Clin Microbiol Infect10:46–53 [CrossRef][PubMed]
    [Google Scholar]
  12. Fyhrquist F., Saijonmaa O.. ( 2008;). Renin–angiotensin system revisited. J Intern Med264:224–236 [CrossRef][PubMed]
    [Google Scholar]
  13. Goldstein J. M., Banbula A., Kordula T., Mayo J. A., Travis J.. ( 2001;). Novel extracellular x-prolyl dipeptidyl-peptidase (DPP) from Streptococcus gordonii FSS2: an emerging subfamily of viridans streptococcal x-prolyl DPPs. Infect Immun69:5494–5501 [CrossRef][PubMed]
    [Google Scholar]
  14. Goldstein J. M., Nelson D., Kordula T., Mayo J. A., Travis J.. ( 2002;). Extracellular arginine aminopeptidase from Streptococcus gordonii FSS2. Infect Immun70:836–843 [CrossRef][PubMed]
    [Google Scholar]
  15. Goldstein J. M., Kordula T., Moon J. L., Mayo J. A., Travis J.. ( 2005;). Characterization of an extracellular dipeptidase from Streptococcus gordonii FSS2. Infect Immun73:1256–1259 [CrossRef][PubMed]
    [Google Scholar]
  16. Harty D. W. S., Patrikakis M., Hume E. B. H., Oakey H. J., Knox K. W.. ( 1993;). The aggregation of human platelets by Lactobacillus species. J Gen Microbiol139:2945–2951[PubMed][CrossRef]
    [Google Scholar]
  17. Harty D. W. S., Mayo J. A., Cook S. L., Jacques N. A.. ( 2000;). Environmental regulation of glycosidase and peptidase production by Streptococcus gordonii FSS2. Microbiology146:1923–1931[PubMed]
    [Google Scholar]
  18. Harty D. W. S., Chen Y., Simpson C. L., Berg T., Cook S. L., Mayo J. A., Hunter N., Jacques N. A.. ( 2004;). Characterisation of a novel homodimeric N-acetyl-β-d-glucosaminidase from Streptococcus gordonii . Biochem Biophys Res Commun319:439–447 [CrossRef][PubMed]
    [Google Scholar]
  19. Jagroop I. A., Mikhailidis D. P.. ( 2000;). Angiotensin II can induce and potentiate shape change in human platelets: effect of losartan. J Hum Hypertens14:581–585 [CrossRef][PubMed]
    [Google Scholar]
  20. Jakubovics N. S., Kerrigan S. W., Nobbs A. H., Strömberg N., van Dolleweerd C. J., Cox D. M., Kelly C. G., Jenkinson H. F.. ( 2005;). Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect Immun73:6629–6638 [CrossRef][PubMed]
    [Google Scholar]
  21. Karlsson C., Mörgelin M., Collin M., Lood R., Andersson M. L., Schmidtchen A., Björck L., Frick I.-M.. ( 2009;). SufA – a bacterial enzyme that cleaves fibrinogen and blocks fibrin network formation. Microbiology155:238–248 [CrossRef][PubMed]
    [Google Scholar]
  22. Kerrigan S. W., Jakubovics N. S., Keane C., Maguire P., Wynne K., Jenkinson H. F., Cox D.. ( 2007;). Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect Immun75:5740–5747 [CrossRef][PubMed]
    [Google Scholar]
  23. Kinnby B., Booth N. A., Svensäter G.. ( 2008;). Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. Microbiology154:924–931 [CrossRef][PubMed]
    [Google Scholar]
  24. Kozek-Langenecker S. A., Masaki T., Mohammad H., Green W., Mohammad S. F., Cheung A. K.. ( 1999;). Fibrinogen fragments and platelet dysfunction in uremia. Kidney Int56:299–305 [CrossRef][PubMed]
    [Google Scholar]
  25. Lord S. T.. ( 2011;). Molecular mechanisms affecting fibrin structure and stability. Arterioscler Thromb Vasc Biol31:494–499 [CrossRef][PubMed]
    [Google Scholar]
  26. Moreillon P., Que Y.-A.. ( 2004;). Infective endocarditis. Lancet363:139–149 [CrossRef][PubMed]
    [Google Scholar]
  27. Nelson D., Goldstein J. M., Boatright K., Harty D. W. S., Cook S. L., Hickman P. J., Potempa J., Travis J., Mayo J. A.. ( 2001;). pH-regulated secretion of a glyceraldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: purification, characterization, and cloning of the gene encoding this enzyme. J Dent Res80:371–377 [CrossRef][PubMed]
    [Google Scholar]
  28. Petersen H. J., Keane C., Jenkinson H. F., Vickerman M. M., Jesionowski A., Waterhouse J. C., Cox D., Kerrigan S. W.. ( 2010;). Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect Immun78:413–422 [CrossRef][PubMed]
    [Google Scholar]
  29. Rivière G., Michaud A., Corradi H. R., Sturrock E. D., Ravi Acharya K., Cogez V., Bohin J.-P., Vieau D., Corvol P.. ( 2007;). Characterization of the first angiotensin-converting like enzyme in bacteria: ancestor ACE is already active. Gene399:81–90 [CrossRef][PubMed]
    [Google Scholar]
  30. Senchenkova E. Y., Russell J., Almeida-Paula L. D., Harding J. W., Granger D. N.. ( 2010;). Angiotensin II-mediated microvascular thrombosis. Hypertension56:1089–1095 [CrossRef][PubMed]
    [Google Scholar]
  31. Stinson M. W., Alder S., Kumar S.. ( 2003;). Invasion and killing of human endothelial cells by viridans group streptococci. Infect Immun71:2365–2372 [CrossRef][PubMed]
    [Google Scholar]
  32. Takahashi Y., Yajima A., Cisar J. O., Konishi K.. ( 2004;). Functional analysis of the Streptococcus gordonii DL1 sialic acid-binding adhesin and its essential role in bacterial binding to platelets. Infect Immun72:3876–3882 [CrossRef][PubMed]
    [Google Scholar]
  33. Turner L. S., Kanamoto T., Unoki T., Munro C. L., Wu H., Kitten T.. ( 2009;). Comprehensive evaluation of Streptococcus sanguinis cell wall-anchored proteins in early infective endocarditis. Infect Immun77:4966–4975 [CrossRef][PubMed]
    [Google Scholar]
  34. Vriesema A. J., Dankert J., Zaat S. A. J.. ( 2000;). A shift from oral to blood pH is a stimulus for adaptive gene expression of Streptococcus gordonii CH1 and induces protection against oxidative stress and enhanced bacterial growth by expression of msrA . Infect Immun68:1061–1068 [CrossRef][PubMed]
    [Google Scholar]
  35. Wang B.-Y., Kuramitsu H. K.. ( 2005;). Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii . Appl Environ Microbiol71:354–362 [CrossRef][PubMed]
    [Google Scholar]
  36. Watanabe T., Barker T. A., Berk B. C.. ( 2005;). Angiotensin II and the endothelium: diverse signals and effects. Hypertension45:163–169 [CrossRef][PubMed]
    [Google Scholar]
  37. Weisel J. W.. ( 2004;). The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem112:267–276 [CrossRef][PubMed]
    [Google Scholar]
  38. Wösten-van Asperen R. M., Lutter R., Specht P. A. C., van Woensel J. B., van der Loos C. M., Florquin S., Lachmann B., Bos A. P.. ( 2010;). Ventilator-induced inflammatory response in lipopolysaccharide-exposed rat lung is mediated by angiotensin-converting enzyme. Am J Pathol176:2219–2227 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048710-0
Loading
/content/journal/micro/10.1099/mic.0.048710-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error