1887

Abstract

strain A1 was previously isolated from a geothermal environment for its ability to grow in the presence of high arsenate levels. In this study, the molecular mechanisms of arsenate resistance of the strain were investigated. As(V) was reduced to As(III), as shown by HPLC analysis. Consistent with the observation that the micro-organism is not capable of anaerobic growth, no respiratory arsenate reductases were identified. Using specific PCR primers based on the genome sequence of HTA426, three unlinked genes encoding detoxifying arsenate reductases were detected in strain A1. These genes were designated , and . While is a monocistronic locus, sequencing of the regions flanking and revealed the presence of additional genes encoding a putative arsenite transporter and an ArsR-like regulator upstream of each arsenate reductase, indicating the presence of sequences with putative roles in As(V) reduction, As(III) export and arsenic-responsive regulation. RT-PCR demonstrated that both sets of genes were co-transcribed. Furthermore, and , monitored by quantitative real-time RT-PCR, were upregulated in response to As(V), while was constitutively expressed at a low level. A mechanism for regulation of As(V) detoxification by that is both consistent with our findings and relevant to the biogeochemical cycle of arsenic and its mobility in the environment is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048678-0
2011-07-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2004.html?itemId=/content/journal/micro/10.1099/mic.0.048678-0&mimeType=html&fmt=ahah

References

  1. Achour-Rokbani A., Cordi A., Poupin P., Bauda P., Billard P.. ( 2010;). Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. strain A33. Appl Environ Microbiol76:948–955 [CrossRef][PubMed]
    [Google Scholar]
  2. Baker-Austin C., Dopson M., Wexler M., Sawers R. G., Stemmler A., Rosen B. P., Bond P. L.. ( 2007;). Extreme arsenic resistance by the acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extremophiles11:425–434 [CrossRef][PubMed]
    [Google Scholar]
  3. Bennett M. S., Guan Z., Laurberg M., Su X. D.. ( 2001;). Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Proc Natl Acad Sci U S A98:13577–13582 [CrossRef][PubMed]
    [Google Scholar]
  4. Branco R., Chung A. P., Morais P. V.. ( 2008;). Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T. BMC Microbiol8:95 [CrossRef][PubMed]
    [Google Scholar]
  5. Bruhn D. F., Li J., Silver S., Roberto F., Rosen B. P.. ( 1996;). The arsenical resistance operon of IncN plasmid R46. FEMS Microbiol Lett139:149–153 [CrossRef][PubMed]
    [Google Scholar]
  6. Cai J., DuBow M. S.. ( 1996;). Expression of the Escherichia coli chromosomal ars operon. Can J Microbiol42:662–671 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen C. M., Misra T. K., Silver S., Rosen B. P.. ( 1986;). Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem261:15030–15038[PubMed]
    [Google Scholar]
  8. Chini V., Foka A., Dimitracopoulos G., Spiliopoulou I.. ( 2007;). Absolute and relative real-time PCR in the quantification of tst gene expression among methicillin-resistant Staphylococcus aureus: evaluation by two mathematical models. Lett Appl Microbiol45:479–484 [CrossRef][PubMed]
    [Google Scholar]
  9. Cuebas C., Sannino D., Bini E.. ( 2011;). Isolation and characterization of arsenic resistant Geobacillus kaustophilus strain from geothermal soils. J Basic Microbiol [CrossRef]
    [Google Scholar]
  10. Felsenstein J.. ( 2004;). phylip – Phylogeny Inference Package (Version 3.2). Cladistics5:164–166
    [Google Scholar]
  11. Fisher J. C., Hollibaugh J. T.. ( 2008;). Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California. Appl Environ Microbiol74:2588–2594 [CrossRef][PubMed]
    [Google Scholar]
  12. Gihring T. M., Bond P. L., Peters S. C., Banfield J. F.. ( 2003;). Arsenic resistance in the archaeon “Ferroplasma acidarmanus”: new insights into the structure and evolution of the ars genes. Extremophiles7:123–130[PubMed]
    [Google Scholar]
  13. Jackson M. D., Denu J. M.. ( 2001;). Molecular reactions of protein phosphatases – insights from structure and chemistry. Chem Rev101:2313–2340 [CrossRef][PubMed]
    [Google Scholar]
  14. Ji G., Silver S.. ( 1992;a). Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci U S A89:9474–9478 [CrossRef][PubMed]
    [Google Scholar]
  15. Ji G., Silver S.. ( 1992;b). Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol174:3684–3694[PubMed]
    [Google Scholar]
  16. Kaur P., Rosen B. P.. ( 1992;). Plasmid-encoded resistance to arsenic and antimony. Plasmid27:29–40 [CrossRef][PubMed]
    [Google Scholar]
  17. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). clustal w and clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  18. Li X., Krumholz L. R.. ( 2007;). Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene. J Bacteriol189:3705–3711 [CrossRef][PubMed]
    [Google Scholar]
  19. Li Y., Hu Y., Zhang X., Xu H., Lescop E., Xia B., Jin C.. ( 2007;). Conformational fluctuations coupled to the thiol-disulfide transfer between thioredoxin and arsenate reductase in Bacillus subtilis . J Biol Chem282:11078–11083 [CrossRef][PubMed]
    [Google Scholar]
  20. Martin P., DeMel S., Shi J., Gladysheva T., Gatti D. L., Rosen B. P., Edwards B. F.. ( 2001;). Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure9:1071–1081 [CrossRef][PubMed]
    [Google Scholar]
  21. Mensink E., van de Locht A., Schattenberg A., Linders E., Schaap N., Geurts van Kessel A., De Witte T.. ( 1998;). Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR. Br J Haematol102:768–774 [CrossRef][PubMed]
    [Google Scholar]
  22. Messens J., Silver S.. ( 2006;). Arsenate reduction: thiol cascade chemistry with convergent evolution. J Mol Biol362:1–17 [CrossRef][PubMed]
    [Google Scholar]
  23. Mukhopadhyay R., Rosen B. P.. ( 2002;). Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect110:Suppl. 5745–748[PubMed][CrossRef]
    [Google Scholar]
  24. Mukhopadhyay R., Rosen B. P., Phung L. T., Silver S.. ( 2002;). Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev26:311–325 [CrossRef][PubMed]
    [Google Scholar]
  25. Murphy J. N., Saltikov C. W.. ( 2009;). The ArsR repressor mediates arsenite-dependent regulation of arsenate respiration and detoxification operons of Shewanella sp. strain ANA-3. J Bacteriol191:6722–6731 [CrossRef][PubMed]
    [Google Scholar]
  26. Oden K. L., Gladysheva T. B., Rosen B. P.. ( 1994;). Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Mol Microbiol12:301–306 [CrossRef][PubMed]
    [Google Scholar]
  27. Ordóñez E., Letek M., Valbuena N., Gil J. A., Mateos L. M.. ( 2005;). Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol71:6206–6215 [CrossRef][PubMed]
    [Google Scholar]
  28. Oremland R. S., Stolz J. F.. ( 2003;). The ecology of arsenic. Science300:939–944 [CrossRef][PubMed]
    [Google Scholar]
  29. Pérez-Jiménez J. R., DeFraia C., Young L. Y.. ( 2005;). Arsenate respiratory reductase gene (arrA) for Desulfosporosinus sp. strain Y5. Biochem Biophys Res Commun338:825–829 [CrossRef][PubMed]
    [Google Scholar]
  30. Rosen B. P.. ( 1999;). Families of arsenic transporters. Trends Microbiol7:207–212 [CrossRef][PubMed]
    [Google Scholar]
  31. Rosen B. P.. ( 2002;). Biochemistry of arsenic detoxification. FEBS Lett529:86–92 [CrossRef][PubMed]
    [Google Scholar]
  32. Rosen B. P., Dey S., Dou D., Ji G., Kaur P., Ksenzenko M. Yu., Silver S., Wu J.. ( 1992;). Evolution of an ion-translocating ATPase. Ann N Y Acad Sci671:257–272 [CrossRef][PubMed]
    [Google Scholar]
  33. Rosenstein R., Peschel A., Wieland B., Götz F.. ( 1992;). Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol174:3676–3683[PubMed]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Santini J. M., Streimann I. C., van den Hoven R. N.. ( 2004;). Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. Int J Syst Evol Microbiol54:2241–2244 [CrossRef][PubMed]
    [Google Scholar]
  36. Sato T., Kobayashi Y.. ( 1998;). The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol180:1655–1661[PubMed]
    [Google Scholar]
  37. Shivaji S., Suresh K., Chaturvedi P., Dube S., Sengupta S.. ( 2005;). Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India. Int J Syst Evol Microbiol55:1123–1127 [CrossRef][PubMed]
    [Google Scholar]
  38. Silver S., Budd K., Leahy K. M., Shaw W. V., Hammond D., Novick R. P., Willsky G. R., Malamy M. H., Rosenberg H.. ( 1981;). Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in Escherichia coli and Staphylococcus aureus . J Bacteriol146:983–996[PubMed]
    [Google Scholar]
  39. Silver S., Ji G., Bröer S., Dey S., Dou D., Rosen B. P.. ( 1993;). Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Mol Microbiol8:637–642 [CrossRef][PubMed]
    [Google Scholar]
  40. Stauffer R. E., Thompson J. M.. ( 1984;). Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta48:2547–2561 [CrossRef]
    [Google Scholar]
  41. Stolz J. F., Basu P., Oremland R. S.. ( 2002;). Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol5:201–207 [CrossRef][PubMed]
    [Google Scholar]
  42. Stolz J. F., Basu P., Santini J. M., Oremland R. S.. ( 2006;). Arsenic and selenium in microbial metabolism. Annu Rev Microbiol60:107–130 [CrossRef][PubMed]
    [Google Scholar]
  43. Switzer Blum J., Burns Bindi A., Buzzelli J., Stolz J. F., Oremland R. S.. ( 1998;). Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol171:19–30 [CrossRef][PubMed]
    [Google Scholar]
  44. Takami H., Takaki Y., Chee G. J., Nishi S., Shimamura S., Suzuki H., Matsui S., Uchiyama I.. ( 2004;). Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus . Nucleic Acids Res32:6292–6303 [CrossRef][PubMed]
    [Google Scholar]
  45. Wang G., Kennedy S. P., Fasiludeen S., Rensing C., DasSarma S.. ( 2004;). Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol186:3187–3194 [CrossRef][PubMed]
    [Google Scholar]
  46. Xu C., Rosen B. P.. ( 1997;). Dimerization is essential for DNA binding and repression by the ArsR metalloregulatory protein of Escherichia coli . J Biol Chem272:15734–15738 [CrossRef][PubMed]
    [Google Scholar]
  47. Zargar K., Hoeft S., Oremland R., Saltikov C. W.. ( 2010;). Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol192:3755–3762 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048678-0
Loading
/content/journal/micro/10.1099/mic.0.048678-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error