1887

Abstract

Bacteria encode multiple protein secretion systems that are crucial for interaction with the environment and with hosts. In recent years, attention has focused on type VI secretion systems (T6SSs), which are specialized transporters widely encoded in Proteobacteria. The myriad of processes associated with these secretion systems could be explained by subclasses of T6SS, each involved in specialized functions. To assess diversity and predict function associated with different T6SSs, comparative genomic analysis of 34 genomes was performed. This identified 70 T6SSs, with at least one locus in every strain, except for A1501. By comparing 11 core genes of the T6SS, it was possible to identify five main phylogenetic clusters, with strains typically carrying T6SSs from more than one clade. In addition, most strains encode additional and genes, which encode extracellular structural components of the secretion apparatus. Using a combination of phylogenetic and meta-analysis of transcriptome datasets it was possible to associate specific subsets of VgrG and Hcp proteins with each T6SS clade. Moreover, a closer examination of the genomic context of genes in multiple strains highlights a number of additional genes associated with these regions. It is proposed that these genes may play a role in secretion or alternatively could be new T6S effectors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048645-0
2011-06-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1726.html?itemId=/content/journal/micro/10.1099/mic.0.048645-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Martinez C. E., Christie P. J.. ( 2009;). Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev73:775–808 [CrossRef][PubMed]
    [Google Scholar]
  2. Aschtgen M. S., Bernard C. S., De Bentzmann S., Lloubès R., Cascales E.. ( 2008;). SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli . J Bacteriol190:7523–7531 [CrossRef][PubMed]
    [Google Scholar]
  3. Aschtgen M. S., Gavioli M., Dessen A., Lloubès R., Cascales E.. ( 2010;). The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol75:886–899 [CrossRef][PubMed]
    [Google Scholar]
  4. Bernard C. S., Brunet Y. R., Gueguen E., Cascales E.. ( 2010;). Nooks and crannies in type VI secretion regulation. J Bacteriol192:3850–3860 [CrossRef][PubMed]
    [Google Scholar]
  5. Bingle L. E. H., Bailey C. M., Pallen M. J.. ( 2008;). Type VI secretion: a beginner’s guide. Curr Opin Microbiol11:3–8 [CrossRef][PubMed]
    [Google Scholar]
  6. Blondel C. J., Jiménez J. C., Contreras I., Santiviago C. A.. ( 2009;). Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics10:354 [CrossRef][PubMed]
    [Google Scholar]
  7. Bönemann G., Pietrosiuk A., Diemand A., Zentgraf H., Mogk A.. ( 2009;). Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J28:315–325 [CrossRef][PubMed]
    [Google Scholar]
  8. Bönemann G., Pietrosiuk A., Mogk A.. ( 2010;). Tubules and donuts: a type VI secretion story. Mol Microbiol76:815–821 [CrossRef][PubMed]
    [Google Scholar]
  9. Boyer F., Fichant G., Berthod J., Vandenbrouck Y., Attree I.. ( 2009;). Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?. BMC Genomics10:104 [CrossRef][PubMed]
    [Google Scholar]
  10. Bröms J. E., Lavander M., Sjöstedt A.. ( 2009;). A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis . J Bacteriol191:2431–2446 [CrossRef][PubMed]
    [Google Scholar]
  11. Burtnick M. N., DeShazer D., Nair V., Gherardini F. C., Brett P. J.. ( 2010;). Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun78:88–99 [CrossRef][PubMed]
    [Google Scholar]
  12. Cascales E.. ( 2008;). The type VI secretion toolkit. EMBO Rep9:735–741 [CrossRef][PubMed]
    [Google Scholar]
  13. Cornelis G. R.. ( 2006;). The type III secretion injectisome. Nat Rev Microbiol4:811–825 [CrossRef][PubMed]
    [Google Scholar]
  14. Ernst R. K., D’Argenio D. A., Ichikawa J. K., Bangera M. G., Selgrade S., Burns J. L., Hiatt P., McCoy K., Brittnacher M. et al. ( 2003;). Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ Microbiol5:1341–1349 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J.. ( 2005;). Using the quantitative genetic threshold model for inferences between and within species. Philos Trans R Soc Lond B Biol Sci360:1427–1434 [CrossRef][PubMed]
    [Google Scholar]
  16. Filloux A., Hachani A., Bleves S.. ( 2008;). The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology154:1570–1583 [CrossRef][PubMed]
    [Google Scholar]
  17. Gibbs K. A., Urbanowski M. L., Greenberg E. P.. ( 2008;). Genetic determinants of self identity and social recognition in bacteria. Science321:256–259 [CrossRef][PubMed]
    [Google Scholar]
  18. Gross H., Loper J. E.. ( 2009;). Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep26:1408–1446 [CrossRef][PubMed]
    [Google Scholar]
  19. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  20. Hood R. D., Singh P., Hsu F. S., Güvener T., Carl M. A., Trinidad R. R. S., Silverman J. M., Ohlson B. B., Hicks K. G., Plemel R. L.. ( 2010;). A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe7:25–37 [CrossRef][PubMed]
    [Google Scholar]
  21. Hsu F. S., Schwarz S., Mougous J. D.. ( 2009;). TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa . Mol Microbiol72:1111–1125 [CrossRef][PubMed]
    [Google Scholar]
  22. Leiman P. G., Basler M., Ramagopal U. A., Bonanno J. B., Sauder J. M., Pukatzki S., Burley S. K., Almo S. C., Mekalanos J. J.. ( 2009;). Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A106:4154–4159 [CrossRef][PubMed]
    [Google Scholar]
  23. Lesic B., Starkey M., He J., Hazan R., Rahme L. G.. ( 2009;). Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology155:2845–2855 [CrossRef][PubMed]
    [Google Scholar]
  24. Liscovitch M., Czarny M., Fiucci G., Tang X. Q.. ( 2000;). Phospholipase D: molecular and cell biology of a novel gene family. Biochem J345:401–415 [CrossRef][PubMed]
    [Google Scholar]
  25. Liu H., Coulthurst S. J., Pritchard L., Hedley P. E., Ravensdale M., Humphris S., Burr T., Takle G., Brurberg M. B. et al. ( 2008;). Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum . PLoS Pathog4:e1000093 [CrossRef][PubMed]
    [Google Scholar]
  26. Ma A. T., Mekalanos J. J.. ( 2010;). In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci U S A107:4365–4370 [CrossRef][PubMed]
    [Google Scholar]
  27. Ma L. S., Lin J. S., Lai E. M.. ( 2009;). An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its Walker A motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens . J Bacteriol191:4316–4329 [CrossRef][PubMed]
    [Google Scholar]
  28. MacIntyre D. L., Miyata S. T., Kitaoka M., Pukatzki S.. ( 2010;). The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A107:19520–19524 [CrossRef][PubMed]
    [Google Scholar]
  29. Mougous J. D., Cuff M. E., Raunser S., Shen A., Zhou M., Gifford C. A., Goodman A. L., Joachimiak G., Ordoñez C. L. et al. ( 2006;). A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science312:1526–1530 [CrossRef][PubMed]
    [Google Scholar]
  30. Mougous J. D., Gifford C. A., Ramsdell T. L., Mekalanos J. J.. ( 2007;). Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa . Nat Cell Biol9:797–803 [CrossRef][PubMed]
    [Google Scholar]
  31. Parsons D. A., Heffron F.. ( 2005;). sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun73:4338–4345 [CrossRef][PubMed]
    [Google Scholar]
  32. Pell L. G., Kanelis V., Donaldson L. W., Howell P. L., Davidson A. R.. ( 2009;). The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A106:4160–4165 [CrossRef][PubMed]
    [Google Scholar]
  33. Persson O. P., Pinhassi J., Riemann L., Marklund B. I., Rhen M., Normark S., González J. M., Hagström A.. ( 2009;). High abundance of virulence gene homologues in marine bacteria. Environ Microbiol11:1348–1357 [CrossRef][PubMed]
    [Google Scholar]
  34. Potvin E., Lehoux D. E., Kukavica-Ibrulj I., Richard K. L., Sanschagrin F., Lau G. W., Levesque R. C.. ( 2003;). In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol5:1294–1308 [CrossRef][PubMed]
    [Google Scholar]
  35. Puigbò P., Garcia-Vallvé S., McInerney J. O.. ( 2007;). topd/fmts: a new software to compare phylogenetic trees. Bioinformatics23:1556–1558 [CrossRef][PubMed]
    [Google Scholar]
  36. Pukatzki S., Ma A. T., Revel A. T., Sturtevant D., Mekalanos J. J.. ( 2007;). Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A104:15508–15513 [CrossRef][PubMed]
    [Google Scholar]
  37. Pukatzki S., McAuley S. B., Miyata S. T.. ( 2009;). The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol12:11–17 [CrossRef][PubMed]
    [Google Scholar]
  38. Robinson J. B., Telepnev M. V., Zudina I. V., Bouyer D., Montenieri J. A., Bearden S. W., Gage K. L., Agar S. L., Foltz S. M., Chauhan S.. ( 2009;). Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb Pathog47:243–251 [CrossRef][PubMed]
    [Google Scholar]
  39. Roucourt B., Lecoutere E., Chibeu A., Hertveldt K., Volckaert G., Lavigne R.. ( 2009;). A procedure for systematic identification of bacteriophage-host interactions of P. aeruginosa phages. Virology387:50–58 [CrossRef][PubMed]
    [Google Scholar]
  40. Schwarz S., Hood R. D., Mougous J. D.. ( 2010;a). What is type VI secretion doing in all those bugs?. Trends Microbiol18:531–537 [CrossRef][PubMed]
    [Google Scholar]
  41. Schwarz S., West T. E., Boyer F., Chiang W. C., Carl M. A., Hood R. D., Rohmer L., Tolker-Nielsen T., Skerrett S. J., Mougous J. D.. ( 2010;b). Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog6:e1001068 [CrossRef][PubMed]
    [Google Scholar]
  42. Shrivastava S., Mande S. S.. ( 2008;). Identification and functional characterization of gene components of type VI secretion system in bacterial genomes. PLoS ONE3:e2955 [CrossRef][PubMed]
    [Google Scholar]
  43. Southey-Pillig C. J., Davies D. G., Sauer K.. ( 2005;). Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol187:8114–8126 [CrossRef][PubMed]
    [Google Scholar]
  44. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S. L., Hufnagle W. O., Kowalik D. J. et al. ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964 [CrossRef][PubMed]
    [Google Scholar]
  45. Suarez G., Sierra J. C., Erova T. E., Sha J., Horneman A. J., Chopra A. K.. ( 2010;). A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol192:155–168 [CrossRef][PubMed]
    [Google Scholar]
  46. Taghavi S., Barac T., Greenberg B., Borremans B., Vangronsveld J., van der Lelie D.. ( 2005;). Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol71:8500–8505 [CrossRef][PubMed]
    [Google Scholar]
  47. Tanaka S., Maeda Y., Tashima Y., Kinoshita T.. ( 2004;). Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem279:14256–14263 [CrossRef][PubMed]
    [Google Scholar]
  48. van Passel M. W. J., Luyf A. C. M., van Kampen A. H. C., Bart A., van der Ende A.. ( 2005;). Deltarho-web, an online tool to assess composition similarity of individual nucleic acid sequences. Bioinformatics21:3053–3055 [CrossRef][PubMed]
    [Google Scholar]
  49. Wang X., Wang Q., Xiao J., Liu Q., Wu H., Xu L., Zhang Y.. ( 2009;). Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol27:469–477 [CrossRef][PubMed]
    [Google Scholar]
  50. Weber B., Hasic M., Chen C., Wai S. N., Milton D. L.. ( 2009;). Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum . Environ Microbiol11:3018–3028 [CrossRef][PubMed]
    [Google Scholar]
  51. Whelan S., Goldman N.. ( 2001;). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol18:691–699[PubMed][CrossRef]
    [Google Scholar]
  52. Wilderman P. J., Vasil A. I., Johnson Z., Vasil M. L.. ( 2001;). Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol Microbiol39:291–304 [CrossRef][PubMed]
    [Google Scholar]
  53. Williamson L. L., Borlee B. R., Schloss P. D., Guan C. H., Allen H. K., Handelsman J.. ( 2005;). Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol71:6335–6344 [CrossRef][PubMed]
    [Google Scholar]
  54. Wu H. Y., Chung P. C., Shih H. W., Wen S. R., Lai E. M.. ( 2008;). Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens . J Bacteriol190:2841–2850 [CrossRef][PubMed]
    [Google Scholar]
  55. Zheng J., Leung K. Y.. ( 2007;). Dissection of a type VI secretion system in Edwardsiella tarda . Mol Microbiol66:1192–1206 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048645-0
Loading
/content/journal/micro/10.1099/mic.0.048645-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error