1887

Abstract

In an acidic protein medium secretes an aspartic endoprotease (Pep) as well as tripeptidyl-peptidases, a prolyl-peptidase and carboxypeptidases. In addition, LC-MS/MS revealed a novel glutamic protease, AfuGprA, homologous to aspergillopepsin II. The importance of AfuGprA in protein digestion was evaluated by deletion of its encoding gene in wild-type D141 and in a Δ mutant. Either Pep or AfuGprA was shown to be necessary for fungal growth in protein medium at low pH. Exoproteolytic activity is therefore not sufficient for complete protein hydrolysis and fungal growth in a medium containing proteins as the sole nitrogen source. Pep and AfuGprA constitute a pair of endoproteases active at low pH, in analogy to alkaline protease (Alp) and metalloprotease I (Mep), where at least one of these enzymes is necessary for fungal growth in protein medium at neutral pH. Heterologous expression of AfuGprA in showed that the enzyme is synthesized as a preproprotein and that the propeptide is removed through an autoproteolytic reaction at low pH to generate the mature protease. In contrast to aspergillopepsin II, AfuGprA is a single-chain protein and is structurally more similar to G1 proteases characterized in other non- fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048603-0
2011-05-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1541.html?itemId=/content/journal/micro/10.1099/mic.0.048603-0&mimeType=html&fmt=ahah

References

  1. Beauvais A., Monod M., Debeaupuis J. P., Diaquin M., Kobayashi H., Latgé J. P.. ( 1997;a). Biochemical and antigenic characterization of a new dipeptidyl-peptidase isolated from Aspergillus fumigatus . J Biol Chem272:6238–6244 [CrossRef][PubMed]
    [Google Scholar]
  2. Beauvais A., Monod M., Wyniger J., Debeaupuis J. P., Grouzmann E., Brakch N., Svab J., Hovanessian A. G., Latgé J. P.. ( 1997;b). Dipeptidyl-peptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infect Immun65:3042–3047[PubMed]
    [Google Scholar]
  3. Beffa T., Staib F., Lott Fischer J., Lyon P. F., Gumowski P., Marfenina O. E., Dunoyer-Geindre S., Georgen F., Roch-Susuki R. et al. ( 1998;). Mycological control and surveillance of biological waste and compost. Med Mycol36:Suppl. 1137–145[PubMed]
    [Google Scholar]
  4. Bergmann A., Hartmann T., Cairns T., Bignell E. M., Krappmann S.. ( 2009;). A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun77:4041–4050 [CrossRef][PubMed]
    [Google Scholar]
  5. Borg-von Zepelin M., Beggah S., Boggian K., Sanglard D., Monod M.. ( 1998;). The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol28:543–554 [CrossRef][PubMed]
    [Google Scholar]
  6. Byun T., Kofod L., Blinkovsky A.. ( 2001;). Synergistic action of an X-prolyl dipeptidyl aminopeptidase and a non-specific aminopeptidase in protein hydrolysis. J Agric Food Chem49:2061–2063 [CrossRef][PubMed]
    [Google Scholar]
  7. Chevallet M., Luche S., Rabilloud T.. ( 2006;). Silver staining of proteins in polyacrylamide gels. Nat Protoc1:1852–1858 [CrossRef][PubMed]
    [Google Scholar]
  8. Fujinaga M., Cherney M. M., Oyama H., Oda K., James M. N.. ( 2004;). The molecular structure and catalytic mechanism of a novel carboxyl peptidase from Scytalidium lignicolum . Proc Natl Acad Sci U S A101:3364–3369 [CrossRef][PubMed]
    [Google Scholar]
  9. Gagnon-Arsenault I., Tremblay J., Bourbonnais Y.. ( 2006;). Fungal yapsins and cell wall: a unique family of aspartic peptidases for a distinctive cellular function. FEM Yeast Res6:966–978 [CrossRef][PubMed]
    [Google Scholar]
  10. Gascuel O.. ( 1997;). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol14:685–695[PubMed][CrossRef]
    [Google Scholar]
  11. Goloboff P., Farris J., Nixon K.. ( 2008;). TNT: a free program for phylogenetic analysis. Cladistics24:774–786 [CrossRef]
    [Google Scholar]
  12. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  13. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  14. Huson D. H., Richter D. C., Rausch C., Dezulian T., Franz M., Rupp R.. ( 2007;). Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics8:460 [CrossRef][PubMed]
    [Google Scholar]
  15. Jaton-Ogay K., Paris S., Huerre M., Quadroni M., Falchetto R., Togni G., Latgé J. P., Monod M.. ( 1994;). Cloning and disruption of the gene encoding an extracellular metalloprotease of Aspergillus fumigatus . Mol Microbiol14:917–928 [CrossRef][PubMed]
    [Google Scholar]
  16. Kämper J.. ( 2004;). A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis . Mol Genet Genomics271:103–110 [CrossRef][PubMed]
    [Google Scholar]
  17. Kataoka Y., Takada K., Oyama H., Tsunemi M., James M. N., Oda K.. ( 2005;). Catalytic residues and substrate specificity of scytalidoglutamic peptidase, the first member of the eqolisin in family (G1) of peptidases. FEBS Lett579:2991–2994 [CrossRef][PubMed]
    [Google Scholar]
  18. Koaze Y., Goi H., Ezawa K., Yamada Y., Hara T.. ( 1964;). Fungal proteolytic enzymes. Part I. Isolation of two kinds of acid proteases excreted by Aspergillus niger var macrosporus . Agric Biol Chem28:216–223[CrossRef]
    [Google Scholar]
  19. Krappmann S., Bayram O., Braus G. H.. ( 2005;). Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell4:1298–1307 [CrossRef][PubMed]
    [Google Scholar]
  20. Krappmann S., Sasse C., Braus G. H.. ( 2006;). Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell5:212–215 [CrossRef][PubMed]
    [Google Scholar]
  21. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  22. Latgé J. P.. ( 1999;). Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev12:310–350[PubMed]
    [Google Scholar]
  23. Léchenne B., Reichard U., Zaugg C., Fratti M., Kunert J., Boulat O., Monod M.. ( 2007;). Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology153:905–913 [CrossRef][PubMed]
    [Google Scholar]
  24. Mattern I. E., van Noort J. M., van den Berg P., Archer D. B., Roberts I. N., van den Hondel C. A.. ( 1992;). Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol Gen Genet234:332–336 [CrossRef][PubMed]
    [Google Scholar]
  25. Monod M., Togni G., Rahalison L., Frenk E.. ( 1991;). Isolation and characterisation of an extracellular alkaline protease of Aspergillus fumigatus . J Med Microbiol35:23–28 [CrossRef][PubMed]
    [Google Scholar]
  26. Monod M., Paris S., Sarfati J., Jaton-Ogay K., Ave P., Latgé J. P.. ( 1993;a). Virulence of alkaline protease-deficient mutants of Aspergillus fumigatus . FEMS Microbiol Lett106:39–46 [CrossRef][PubMed]
    [Google Scholar]
  27. Monod M., Paris S., Sanglard D., Jaton-Ogay K., Bille J., Latgé J. P.. ( 1993;b). Isolation and characterization of a secreted metalloprotease of Aspergillus fumigatus . Infect Immun61:4099–4104[PubMed]
    [Google Scholar]
  28. Monod M., Léchenne B., Jousson O., Grand D., Zaugg C., Stöcklin R., Grouzmann E.. ( 2005;). Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum . Microbiology151:145–155 [CrossRef][PubMed]
    [Google Scholar]
  29. Monod M., Jousson O., Reichard U.. ( 2009;). Aspergillus fumigatus secreted proteases. Aspergillus fumigatus and Aspergillosis87–106 Latgé J.-P., Steinbach W. J.. Washington, DC: American Society for Microbiology;[CrossRef]
    [Google Scholar]
  30. O’Donoghue A. J., Mahon C. S., Goetz D. H., O’Malley J. M., Gallagher D. M., Zhou M., Murray P. G., Craik C. S., Tuohy M. G.. ( 2008;). Inhibition of a secreted glutamic peptidase prevents growth of the fungus Talaromyces emersonii . J Biol Chem283:29186–29195 [CrossRef][PubMed]
    [Google Scholar]
  31. Oda K.. ( 2004;). Scytalidopepsin B. Handbook of Proteolytic Enzymes, 2nd edn.219–221 Barrett A. J., Rawlings N. D., Woessner J. F.. London: Elsevier;
    [Google Scholar]
  32. Punt P. J., Schuren F. H., Lehmbeck J., Christensen T., Hjort C., van den Hondel C. A.. ( 2008;). Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol45:1591–1599 [CrossRef][PubMed]
    [Google Scholar]
  33. Reichard U., Büttner S., Eiffert H., Staib F., Rüchel R.. ( 1990;). Purification and characterisation of an extracellular serine proteinase from Aspergillus fumigatus and its detection in tissue. J Med Microbiol33:243–251 [CrossRef][PubMed]
    [Google Scholar]
  34. Reichard U., Monod M., Rüchel R.. ( 1995;). Molecular cloning and sequencing of the gene encoding an extracellular aspartic proteinase from Aspergillus fumigatus . FEMS Microbiol Lett130:69–74[PubMed]
    [Google Scholar]
  35. Reichard U., Monod M., Odds F., Rüchel R.. ( 1997;). Virulence of an aspergillopepsin-deficient mutant of Aspergillus fumigatus and evidence for another aspartic proteinase linked to the fungal cell wall. J Med Vet Mycol35:189–196 [CrossRef][PubMed]
    [Google Scholar]
  36. Reichard U., Léchenne B., Asif A. R., Streit F., Grouzmann E., Jousson O., Monod M.. ( 2006;). Sedolisins, a new class of secreted proteases from Aspergillus fumigatus with endoprotease or tripeptidyl-peptidase activity at acidic pHs. Appl Environ Microbiol72:1739–1748 [CrossRef][PubMed]
    [Google Scholar]
  37. Rolland S., Bruel C., Rascle C., Girard V., Billon-Grand G., Poussereau N.. ( 2009;). pH controls both transcription and post-translational processing of the protease BcACP1 in the phytopathogenic fungus Botrytis cinerea . Microbiology155:2097–2105 [CrossRef][PubMed]
    [Google Scholar]
  38. Ronquist F., Huelsenbeck J. P.. ( 2003;). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics19:1572–1574 [CrossRef][PubMed]
    [Google Scholar]
  39. Sasaki H., Tanokura M., Muramatsu T., Nakagawa A., Iwata S., Hamaya T., Takizawa T., Kono T., Takahashi K.. ( 1995;). X-ray crystallographic study of a non-pepsin-type acid proteinase, Aspergillus niger proteinase A. Adv Exp Med Biol362:605–609[PubMed]
    [Google Scholar]
  40. Sharon H., Hagag S., Osherov N.. ( 2009;). Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold Aspergillus fumigatus . Infect Immun77:4051–4060 [CrossRef][PubMed]
    [Google Scholar]
  41. Shevchenko A., Wilm M., Vorm O., Mann M.. ( 1996;). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem68:850–858 [CrossRef][PubMed]
    [Google Scholar]
  42. Sriranganadane D., Waridel P., Salamin K., Reichard U., Grouzmann E., Neuhaus J. M., Quadroni M., Monod M.. ( 2010;). Aspergillus protein degradation pathways with different secreted protease sets at neutral and acidic pH. J Proteome Res9:3511–3519 [CrossRef][PubMed]
    [Google Scholar]
  43. Takahashi K.. ( 2004;). Apergillopepsin II. Handbook of Proteolytic Enzymes, 2nd edn.221–224 Barrett A. J., Rawlings N. D., Woessner J. F.. London: Elsevier;
    [Google Scholar]
  44. Tilburn J., Scazzocchio C., Taylor G. G., Zabicky-Zissman J. H., Lockington R. A., Davies R. W.. ( 1983;). Transformation by integration in Aspergillus nidulans . Gene26:205–221 [CrossRef][PubMed]
    [Google Scholar]
  45. von Heijne G.. ( 1986;). A new method for predicting signal sequence cleavage sites. Nucleic Acids Res14:4683–4690 [CrossRef][PubMed]
    [Google Scholar]
  46. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M.. ( 1996;). Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature379:466–469 [CrossRef][PubMed]
    [Google Scholar]
  47. Yabuki Y., Kubota K., Kojima M., Inoue H., Takahashi K.. ( 2004;). Identification of a glutamine residue essential for catalytic activity of aspergilloglutamic peptidase by site-directed mutagenesis. FEBS Lett569:161–164 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048603-0
Loading
/content/journal/micro/10.1099/mic.0.048603-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error