1887

Abstract

Most studies on serovar Typhimurium infection focus on strains ATCC SL1344 or NTCC 12023 (ATCC 14028). We have compared the abilities of these strains to induce membrane ruffles and invade epithelial cells. . Typhimurium strain 12023 is less invasive and induces smaller membrane ruffles on MDCK cells compared with SL1344. Since the SPI-1 effector SopE is present in SL1344 and absent from 12023, and SL1344 mutants have reduced invasiveness, we investigated whether 12023 is less invasive due to the absence of SopE. However, comparison of SopE and SopE . Typhimurium strains, deletion mutants and 12023 expressing a plasmid revealed no consistent relationship between SopE status and relative invasiveness. Nevertheless, absence of SopE was closely correlated with reduced size of membrane ruffles. A P reporter revealed that relatively few of the 12023 population (and that of the equivalent strain ATCC 14028) express SPI-1 compared to other . Typhimurium strains. Expression of a P reporter mirrored that of P in 12023 and SL1344, implicating reduced signalling via the transcription factor HilA in the heterogeneous SPI-1 expression of these strains. The previously unrecognized strain heterogeneity in SPI-1 expression and invasiveness has important implications for studies of infection.

Funding
This study was supported by the:
  • MRC
  • BBSRC
  • Unilever
  • DEFRA/VLA
  • Wellcome Trust
  • MRC
  • Wolfson Foundation
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048496-0
2011-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2072.html?itemId=/content/journal/micro/10.1099/mic.0.048496-0&mimeType=html&fmt=ahah

References

  1. Boddicker J. D., Jones B. D. ( 2004). Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells. Infect Immun 72:2002–2013 [View Article][PubMed]
    [Google Scholar]
  2. Bruno V. M., Hannemann S., Lara-Tejero M., Flavell R. A., Kleinstein S. H., Galán J. E. ( 2009). Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog 5:e1000538 [View Article][PubMed]
    [Google Scholar]
  3. Bujny M. V., Ewels P. A., Humphrey S., Attar N., Jepson M. A., Cullen P. J. ( 2008). Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. J Cell Sci 121:2027–2036 [View Article][PubMed]
    [Google Scholar]
  4. Clark L., Martinez-Argudo I., Humphrey T. J., Jepson M. A. ( 2009). GFP plasmid-induced defects in Salmonella invasion depend on plasmid architecture, not protein expression. Microbiology 155:461–467 [View Article][PubMed]
    [Google Scholar]
  5. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  6. Ellermeier J. R., Slauch J. M. ( 2007). Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10:24–29 [View Article][PubMed]
    [Google Scholar]
  7. Francis C. L., Ryan T. A., Jones B. D., Smith S. J., Falkow S. ( 1993). Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364:639–642 [View Article][PubMed]
    [Google Scholar]
  8. Fu Y., Galán J. E. ( 1999). A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–297 [View Article][PubMed]
    [Google Scholar]
  9. Hänisch J., Ehinger J., Ladwein M., Rohde M., Derivery E., Bosse T., Steffen A., Bumann D., Misselwitz B. et al. ( 2010). Molecular dissection of Salmonella-induced membrane ruffling versus invasion. Cell Microbiol 12:84–98 [View Article][PubMed]
    [Google Scholar]
  10. Hardt W. D., Chen L. M., Schuebel K. E., Bustelo X. R., Galán J. E. ( 1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826 [View Article][PubMed]
    [Google Scholar]
  11. Hautefort I., Proença M. J., Hinton J. C. ( 2003). Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl Environ Microbiol 69:7480–7491 [View Article][PubMed]
    [Google Scholar]
  12. Hayward R. D., Koronakis V. ( 1999). Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella . EMBO J 18:4926–4934 [View Article][PubMed]
    [Google Scholar]
  13. Henry T., García-Del Portillo F., Gorvel J. P. ( 2005). Identification of Salmonella functions critical for bacterial cell division within eukaryotic cells. Mol Microbiol 56:252–267 [View Article][PubMed]
    [Google Scholar]
  14. Hernandez L. D., Hueffer K., Wenk M. R., Galán J. E. ( 2004). Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304:1805–1807 [View Article][PubMed]
    [Google Scholar]
  15. Hoiseth S. K., Stocker B. A. ( 1981). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239 [View Article][PubMed]
    [Google Scholar]
  16. Humphrey S., Clark L. F., Humphrey T. J., Jepson M. A. ( 2011). Enhanced recovery of Salmonella Typhimurium DT104 from exposure to stress at low temperature. Microbiology 157:1103–1114[PubMed] [CrossRef]
    [Google Scholar]
  17. Ibarra J. A., Knodler L. A., Sturdevant D. E., Virtaneva K., Carmody A. B., Fischer E. R., Porcella S. F., Steele-Mortimer O. ( 2010). Induction of Salmonella pathogenicity island 1 under different growth conditions can affect Salmonella-host cell interactions in vitro . Microbiology 156:1120–1133 [View Article][PubMed]
    [Google Scholar]
  18. Jepson M. A., Kenny B., Leard A. D. ( 2001). Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells. Cell Microbiol 3:417–426 [View Article][PubMed]
    [Google Scholar]
  19. Klein J. R., Fahlen T. F., Jones B. D. ( 2000). Transcriptional organization and function of invasion genes within Salmonella enterica serovar Typhimurium pathogenicity island 1, including the prgH, prgI, prgJ, prgK, orgA, orgB, and orgC genes. Infect Immun 68:3368–3376 [View Article][PubMed]
    [Google Scholar]
  20. Kubori T., Matsushima Y., Nakamura D., Uralil J., Lara-Tejero M., Sukhan A., Galán J. E., Aizawa S. I. ( 1998). Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605 [View Article][PubMed]
    [Google Scholar]
  21. Lara-Tejero M., Galán J. E. ( 2009). Salmonella enterica serovar Typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect Immun 77:2635–2642 [View Article][PubMed]
    [Google Scholar]
  22. Linn T., St Pierre R. ( 1990). Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ . J Bacteriol 172:1077–1084[PubMed]
    [Google Scholar]
  23. McGhie E. J., Hayward R. D., Koronakis V. ( 2001). Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J 20:2131–2139 [View Article][PubMed]
    [Google Scholar]
  24. McGhie E. J., Hayward R. D., Koronakis V. ( 2004). Control of actin turnover by a Salmonella invasion protein. Mol Cell 13:497–510 [View Article][PubMed]
    [Google Scholar]
  25. McGhie E. J., Brawn L. C., Hume P. J., Humphreys D., Koronakis V. ( 2009). Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12:117–124 [View Article][PubMed]
    [Google Scholar]
  26. Miller J. H. ( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Mirold S., Ehrbar K., Weissmüller A., Prager R., Tschäpe H., Rüssmann H., Hardt W. D. ( 2001). Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2 . J Bacteriol 183:2348–2358 [View Article][PubMed]
    [Google Scholar]
  28. Misselwitz B., Kreibich S. K., Rout S., Stecher B., Periaswamy B., Hardt W. D. ( 2011). Salmonella enterica serovar Typhimurium binds to HeLa cells via Fim-mediated reversible adhesion and irreversible type three secretion system 1-mediated docking. Infect Immun 79:330–341 [View Article][PubMed]
    [Google Scholar]
  29. Müller A. J., Hoffmann C., Galle M., Van Den Broeke A., Heikenwalder M., Falter L., Misselwitz B., Kremer M., Beyaert R., Hardt W. D. ( 2009). The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. Cell Host Microbe 6:125–136 [View Article][PubMed]
    [Google Scholar]
  30. Norris F. A., Wilson M. P., Wallis T. S., Galyov E. E., Majerus P. W. ( 1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A 95:14057–14059 [View Article][PubMed]
    [Google Scholar]
  31. Patel J. C., Galán J. E. ( 2006). Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol 175:453–463 [View Article][PubMed]
    [Google Scholar]
  32. Perrett C. A., Jepson M. A. ( 2007). Applications of cell imaging in Salmonella research. Methods Mol Biol 394:235–273 [View Article][PubMed]
    [Google Scholar]
  33. Perrett C. A., Jepson M. A. ( 2009). Regulation of Salmonella-induced membrane ruffling by SipA differs in strains lacking other effectors. Cell Microbiol 11:475–487 [View Article][PubMed]
    [Google Scholar]
  34. Perrett C. A., Karavolos M. H., Humphrey S., Mastroeni P., Martinez-Argudo I., Spencer H., Bulmer D., Winzer K., McGhie E. et al. ( 2009). LuxS-based quorum sensing does not affect the ability of Salmonella enterica serovar Typhimurium to express the SPI-1 type 3 secretion system, induce membrane ruffles, or invade epithelial cells. J Bacteriol 191:7253–7259 [View Article][PubMed]
    [Google Scholar]
  35. Raffatellu M., Wilson R. P., Chessa D., Andrews-Polymenis H., Tran Q. T., Lawhon S., Khare S., Adams L. G., Bäumler A. J. ( 2005). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect Immun 73:146–154 [View Article][PubMed]
    [Google Scholar]
  36. Saini S., Slauch J. M., Aldridge P. D., Rao C. V. ( 2010). Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J Bacteriol 192:5767–5777 [View Article][PubMed]
    [Google Scholar]
  37. Schraidt O., Lefebre M. D., Brunner M. J., Schmied W. H., Schmidt A., Radics J., Mechtler K., Galán J. E., Marlovits T. C. ( 2010). Topology and organization of the Salmonella typhimurium type III secretion needle complex components. PLoS Pathog 6:e1000824 [View Article][PubMed]
    [Google Scholar]
  38. Steele-Mortimer O., Brumell J. H., Knodler L. A., Méresse S., Lopez A., Finlay B. B. ( 2002). The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell Microbiol 4:43–54 [View Article][PubMed]
    [Google Scholar]
  39. Stender S., Friebel A., Linder S., Rohde M., Mirold S., Hardt W. D. ( 2000). Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol 36:1206–1221 [View Article][PubMed]
    [Google Scholar]
  40. Temme K., Salis H., Tullman-Ercek D., Levskaya A., Hong S. H., Voigt C. A. ( 2008). Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within Salmonella pathogenicity island 1. J Mol Biol 377:47–61 [View Article][PubMed]
    [Google Scholar]
  41. Terebiznik M. R., Vieira O. V., Marcus S. L., Slade A., Yip C. M., Trimble W. S., Meyer T., Finlay B. B., Grinstein S. ( 2002). Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella . Nat Cell Biol 4:766–773 [View Article][PubMed]
    [Google Scholar]
  42. Unsworth K. E., Way M., McNiven M., Machesky L., Holden D. W. ( 2004). Analysis of the mechanisms of Salmonella-induced actin assembly during invasion of host cells and intracellular replication. Cell Microbiol 6:1041–1055 [View Article][PubMed]
    [Google Scholar]
  43. Zhang S., Santos R. L., Tsolis R. M., Mirold S., Hardt W. D., Adams L. G., Bäumler A. J. ( 2002). Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol Lett 217:243–247 [View Article][PubMed]
    [Google Scholar]
  44. Zhou D., Galán J. E. ( 2001). Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect 3:1293–1298 [View Article][PubMed]
    [Google Scholar]
  45. Zhou D., Mooseker M. S., Galán J. E. ( 1999). Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283:2092–2095 [View Article][PubMed]
    [Google Scholar]
  46. Zhou D., Chen L. M., Hernandez L., Shears S. B., Galán J. E. ( 2001). A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 39:248–259 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048496-0
Loading
/content/journal/micro/10.1099/mic.0.048496-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error