1887

Abstract

H16 (DSM 428), whose genome has been sequenced, was found to degrade -acetyltaurine as a sole source of carbon and energy for growth. Utilization of the compound was quantitative. The degradative pathway involved an inducible -acetyltaurine amidohydrolase (NaaS), which catalysed the cleavage of -acetyltaurine to acetate and taurine. The degradation of the latter compound is via an inducible, degradative pathway that involves taurine dehydrogenase [EC 1.4.2.–], sulfoacetaldehyde acetyltransferase [EC 2.3.3.15], phosphotransacetylase [EC 2.4.1.8], a sulfite exporter [TC 9.A.29.2.1] and sulfite dehydrogenase [EC 1.8.2.1]. Induction of the expression of representative gene products, encoded by at least four gene clusters, was confirmed biochemically. The acetate released by NaaS was activated to acetyl-CoA by an inducible acetate–CoA ligase [EC 6.2.1.1]. NaaS was purified to homogeneity; it had a value of 9.4 mM for -acetyltaurine, and it contained tightly bound Zn and Fe atoms. The denatured enzyme has a molecular mass of about 61 kDa (determined by SDS-PAGE) and the native enzyme was apparently monomeric. Peptide-mass fingerprinting identified the locus tag as H16_B0868 in a five-gene cluster, (H16_B0865–H16_B0869). The cluster presumably encodes a LysR-type transcriptional regulator (NaaR), a membrane protein (NaaO), a solute : sodium symporter-family permease [TC 2.A.21] (NaaP), the metal-dependent amidohydrolase (NaaS) and a putative metallochaperone (COG0523) (NaaT). Reverse-transcription PCR indicated that were inducibly transcribed.

Funding
This study was supported by the:
  • University of Konstanz
  • Deutsche Forschungsgemeinschaft (DFG)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048462-0
2011-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2983.html?itemId=/content/journal/micro/10.1099/mic.0.048462-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Baldock M. I., Denger K., Smits T. H. M., Cook A. M. ( 2007). Roseovarius sp. strain 217: aerobic taurine dissimilation via acetate kinase and acetate-CoA ligase. FEMS Microbiol Lett 271:202–206 [View Article][PubMed]
    [Google Scholar]
  3. Brüggemann C., Denger K., Cook A. M., Ruff J. ( 2004). Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans . Microbiology 150:805–816 [View Article][PubMed]
    [Google Scholar]
  4. Cook A. M. ( 1987). Biodegradation of s-triazine xenobiotics. FEMS Microbiol Rev 46:93–116 [View Article]
    [Google Scholar]
  5. Cook A. M., Hütter R. ( 1981). s-Triazines as nitrogen sources for bacteria. J Agric Food Chem 29:1135–1143 [View Article]
    [Google Scholar]
  6. Denger K., Ruff J., Rein U., Cook A. M. ( 2001). Sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem J 357:581–586 [View Article][PubMed]
    [Google Scholar]
  7. Denger K., Weinitschke S., Hollemeyer K., Cook A. M. ( 2004). Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol 182:254–258 [View Article][PubMed]
    [Google Scholar]
  8. Denger K., Weinitschke S., Smits T. H. M., Schleheck D., Cook A. M. ( 2008). Bacterial sulfite dehydrogenases in organotrophic metabolism: separation and identification in Cupriavidus necator H16 and in Delftia acidovorans SPH-1. Microbiology 154:256–263 [View Article][PubMed]
    [Google Scholar]
  9. Denger K., Mayer J., Buhmann M., Weinitschke S., Smits T. H. M., Cook A. M. ( 2009). Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase. J Bacteriol 191:5648–5656 [View Article][PubMed]
    [Google Scholar]
  10. Faham S., Watanabe A., Besserer G. M., Cascio D., Specht A., Hirayama B. A., Wright E. M., Abramson J. ( 2008). The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814 [View Article][PubMed]
    [Google Scholar]
  11. Gesellschaft Deutscher Chemiker ( 1996). German Standard Methods for the Laboratory Examination of Water, Waste Water and Sludge Weinheim: Verlag Chemie;
    [Google Scholar]
  12. Gorzynska A. K., Denger K., Cook A. M., Smits T. H. M. ( 2006). Inducible transcription of genes involved in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3T . Arch Microbiol 185:402–406 [View Article][PubMed]
    [Google Scholar]
  13. Haas C. E., Rodionov D. A., Kropat J., Malasarn D., Merchant S. S., de Crécy-Lagard V. ( 2009). A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics 10:470 [View Article][PubMed]
    [Google Scholar]
  14. Horowitz H., Gilroy S., Feinstein S., Gilardi G. ( 1990). Endocarditis associated with Comamonas acidovorans . J Clin Microbiol 28:143–145[PubMed]
    [Google Scholar]
  15. Huxtable R. J. ( 1992). Physiological actions of taurine. Physiol Rev 72:101–163[PubMed]
    [Google Scholar]
  16. Krejčík Z. ( 2009).Taurine-nitrogen utilized by bacteria: a diverse set of phenomena
  17. Krejčík Z., Denger K., Weinitschke S., Hollemeyer K., Pačes V., Cook A. M., Smits T. H. M. ( 2008). Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 190:159–168 [View Article][PubMed]
    [Google Scholar]
  18. Kuchar J., Hausinger R. P. ( 2004). Biosynthesis of metal sites. Chem Rev 104:509–526 [View Article][PubMed]
    [Google Scholar]
  19. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  20. Laue H., Denger K., Cook A. M. ( 1997). Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol 63:2016–2021[PubMed]
    [Google Scholar]
  21. le Maire M., Ghasi A., Møller J. V. ( 1996). Gel chromatography as an analytical tool for characterization of size and molecular mass of proteins. ACS Symp Ser 635:36–51 [View Article]
    [Google Scholar]
  22. Mayer J., Cook A. M. ( 2009). Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway. J Bacteriol 191:6052–6058 [View Article][PubMed]
    [Google Scholar]
  23. Mayer J., Denger K., Smits T. H. M., Hollemeyer K., Groth U., Cook A. M. ( 2006). N-acetyltaurine dissimilated via taurine by Delftia acidovorans NAT. Arch Microbiol 186:61–67 [View Article][PubMed]
    [Google Scholar]
  24. Mayer J., Denger K., Kaspar K., Hollemeyer K., Smits T. H. M., Huhn T., Cook A. M. ( 2008). Assimilation of homotaurine-nitrogen by Burkholderia sp. and excretion of sulfopropanoate. FEMS Microbiol Lett 279:77–82 [View Article][PubMed]
    [Google Scholar]
  25. Nawaz M. S., Khan A. A., Bhattacharayya D., Siitonen P. H., Cerniglia C. E. ( 1996). Physical, biochemical, and immunological characterization of a thermostable amidase from Klebsiella pneumoniae NCTR 1. J Bacteriol 178:2397–2401[PubMed]
    [Google Scholar]
  26. Racker E. ( 1962). Fructose-6-phosphate phosphoketolase from Acetobacter xylinum . Methods Enzymol 5:276–280 [View Article]
    [Google Scholar]
  27. Reichenbecher W., Kelly D. P., Murrell J. C. ( 1999). Desulfonation of propanesulfonic acid by comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch Microbiol 172:387–392 [View Article][PubMed]
    [Google Scholar]
  28. Reizer J., Reizer A., Saier M. H. Jr ( 1994). A functional superfamily of sodium/solute symporters. Biochim Biophys Acta 1197:133–166[PubMed] [CrossRef]
    [Google Scholar]
  29. Ruff J., Denger K., Cook A. M. ( 2003). Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 369:275–285 [View Article][PubMed]
    [Google Scholar]
  30. Sörbo B. ( 1987). Sulfate: turbidimetric and nephelometric methods. Methods Enzymol 143:3–6 [View Article][PubMed]
    [Google Scholar]
  31. Thurnheer T., Köhler T., Cook A. M., Leisinger T. ( 1986). Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132:1215–1220
    [Google Scholar]
  32. Vollrath F., Fairbrother W. J., Williams R. J. P., Tillinghast E. K., Bernstein D. T., Gallagher K. S., Townley M. A. ( 1990). Compounds in the droplets of the orb spider’s viscid spiral. Nature 345:526–528 [View Article]
    [Google Scholar]
  33. Weinitschke S., Denger K., Cook A. M., Smits T. H. M. ( 2007). The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. Microbiology 153:3055–3060 [View Article][PubMed]
    [Google Scholar]
  34. Weinitschke S., Hollemeyer K., Kusian B., Bowien B., Smits T. H. M., Cook A. M. ( 2010a). Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16. J Biol Chem 285:35249–35254 [View Article][PubMed]
    [Google Scholar]
  35. Weinitschke S., Sharma P. I., Stingl U., Cook A. M., Smits T. H. M. ( 2010b). Gene clusters involved in isethionate degradation by terrestrial and marine bacteria. Appl Environ Microbiol 76:618–621 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048462-0
Loading
/content/journal/micro/10.1099/mic.0.048462-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error