1887

Abstract

H16 (DSM 428), whose genome has been sequenced, was found to degrade -acetyltaurine as a sole source of carbon and energy for growth. Utilization of the compound was quantitative. The degradative pathway involved an inducible -acetyltaurine amidohydrolase (NaaS), which catalysed the cleavage of -acetyltaurine to acetate and taurine. The degradation of the latter compound is via an inducible, degradative pathway that involves taurine dehydrogenase [EC 1.4.2.–], sulfoacetaldehyde acetyltransferase [EC 2.3.3.15], phosphotransacetylase [EC 2.4.1.8], a sulfite exporter [TC 9.A.29.2.1] and sulfite dehydrogenase [EC 1.8.2.1]. Induction of the expression of representative gene products, encoded by at least four gene clusters, was confirmed biochemically. The acetate released by NaaS was activated to acetyl-CoA by an inducible acetate–CoA ligase [EC 6.2.1.1]. NaaS was purified to homogeneity; it had a value of 9.4 mM for -acetyltaurine, and it contained tightly bound Zn and Fe atoms. The denatured enzyme has a molecular mass of about 61 kDa (determined by SDS-PAGE) and the native enzyme was apparently monomeric. Peptide-mass fingerprinting identified the locus tag as H16_B0868 in a five-gene cluster, (H16_B0865–H16_B0869). The cluster presumably encodes a LysR-type transcriptional regulator (NaaR), a membrane protein (NaaO), a solute : sodium symporter-family permease [TC 2.A.21] (NaaP), the metal-dependent amidohydrolase (NaaS) and a putative metallochaperone (COG0523) (NaaT). Reverse-transcription PCR indicated that were inducibly transcribed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048462-0
2011-10-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2983.html?itemId=/content/journal/micro/10.1099/mic.0.048462-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Baldock M. I., Denger K., Smits T. H. M., Cook A. M.. ( 2007;). Roseovarius sp. strain 217: aerobic taurine dissimilation via acetate kinase and acetate-CoA ligase. FEMS Microbiol Lett271:202–206 [CrossRef][PubMed]
    [Google Scholar]
  3. Brüggemann C., Denger K., Cook A. M., Ruff J.. ( 2004;). Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans . Microbiology150:805–816 [CrossRef][PubMed]
    [Google Scholar]
  4. Cook A. M.. ( 1987;). Biodegradation of s-triazine xenobiotics. FEMS Microbiol Rev46:93–116 [CrossRef]
    [Google Scholar]
  5. Cook A. M., Hütter R.. ( 1981;). s-Triazines as nitrogen sources for bacteria. J Agric Food Chem29:1135–1143 [CrossRef]
    [Google Scholar]
  6. Denger K., Ruff J., Rein U., Cook A. M.. ( 2001;). Sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem J357:581–586 [CrossRef][PubMed]
    [Google Scholar]
  7. Denger K., Weinitschke S., Hollemeyer K., Cook A. M.. ( 2004;). Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol182:254–258 [CrossRef][PubMed]
    [Google Scholar]
  8. Denger K., Weinitschke S., Smits T. H. M., Schleheck D., Cook A. M.. ( 2008;). Bacterial sulfite dehydrogenases in organotrophic metabolism: separation and identification in Cupriavidus necator H16 and in Delftia acidovorans SPH-1. Microbiology154:256–263 [CrossRef][PubMed]
    [Google Scholar]
  9. Denger K., Mayer J., Buhmann M., Weinitschke S., Smits T. H. M., Cook A. M.. ( 2009;). Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase. J Bacteriol191:5648–5656 [CrossRef][PubMed]
    [Google Scholar]
  10. Faham S., Watanabe A., Besserer G. M., Cascio D., Specht A., Hirayama B. A., Wright E. M., Abramson J.. ( 2008;). The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science321:810–814 [CrossRef][PubMed]
    [Google Scholar]
  11. Gesellschaft Deutscher Chemiker ( 1996;). German Standard Methods for the Laboratory Examination of Water, Waste Water and Sludge Weinheim: Verlag Chemie;
    [Google Scholar]
  12. Gorzynska A. K., Denger K., Cook A. M., Smits T. H. M.. ( 2006;). Inducible transcription of genes involved in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3T . Arch Microbiol185:402–406 [CrossRef][PubMed]
    [Google Scholar]
  13. Haas C. E., Rodionov D. A., Kropat J., Malasarn D., Merchant S. S., de Crécy-Lagard V.. ( 2009;). A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics10:470 [CrossRef][PubMed]
    [Google Scholar]
  14. Horowitz H., Gilroy S., Feinstein S., Gilardi G.. ( 1990;). Endocarditis associated with Comamonas acidovorans . J Clin Microbiol28:143–145[PubMed]
    [Google Scholar]
  15. Huxtable R. J.. ( 1992;). Physiological actions of taurine. Physiol Rev72:101–163[PubMed]
    [Google Scholar]
  16. Krejčík Z.. ( 2009;).Taurine-nitrogen utilized by bacteria: a diverse set of phenomena
  17. Krejčík Z., Denger K., Weinitschke S., Hollemeyer K., Pačes V., Cook A. M., Smits T. H. M.. ( 2008;). Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol190:159–168 [CrossRef][PubMed]
    [Google Scholar]
  18. Kuchar J., Hausinger R. P.. ( 2004;). Biosynthesis of metal sites. Chem Rev104:509–526 [CrossRef][PubMed]
    [Google Scholar]
  19. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  20. Laue H., Denger K., Cook A. M.. ( 1997;). Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol63:2016–2021[PubMed]
    [Google Scholar]
  21. le Maire M., Ghasi A., Møller J. V.. ( 1996;). Gel chromatography as an analytical tool for characterization of size and molecular mass of proteins. ACS Symp Ser635:36–51 [CrossRef]
    [Google Scholar]
  22. Mayer J., Cook A. M.. ( 2009;). Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway. J Bacteriol191:6052–6058 [CrossRef][PubMed]
    [Google Scholar]
  23. Mayer J., Denger K., Smits T. H. M., Hollemeyer K., Groth U., Cook A. M.. ( 2006;). N-acetyltaurine dissimilated via taurine by Delftia acidovorans NAT. Arch Microbiol186:61–67 [CrossRef][PubMed]
    [Google Scholar]
  24. Mayer J., Denger K., Kaspar K., Hollemeyer K., Smits T. H. M., Huhn T., Cook A. M.. ( 2008;). Assimilation of homotaurine-nitrogen by Burkholderia sp. and excretion of sulfopropanoate. FEMS Microbiol Lett279:77–82 [CrossRef][PubMed]
    [Google Scholar]
  25. Nawaz M. S., Khan A. A., Bhattacharayya D., Siitonen P. H., Cerniglia C. E.. ( 1996;). Physical, biochemical, and immunological characterization of a thermostable amidase from Klebsiella pneumoniae NCTR 1. J Bacteriol178:2397–2401[PubMed]
    [Google Scholar]
  26. Racker E.. ( 1962;). Fructose-6-phosphate phosphoketolase from Acetobacter xylinum . Methods Enzymol5:276–280 [CrossRef]
    [Google Scholar]
  27. Reichenbecher W., Kelly D. P., Murrell J. C.. ( 1999;). Desulfonation of propanesulfonic acid by comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch Microbiol172:387–392 [CrossRef][PubMed]
    [Google Scholar]
  28. Reizer J., Reizer A., Saier M. H. Jr. ( 1994;). A functional superfamily of sodium/solute symporters. Biochim Biophys Acta1197:133–166[PubMed][CrossRef]
    [Google Scholar]
  29. Ruff J., Denger K., Cook A. M.. ( 2003;). Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J369:275–285 [CrossRef][PubMed]
    [Google Scholar]
  30. Sörbo B.. ( 1987;). Sulfate: turbidimetric and nephelometric methods. Methods Enzymol143:3–6 [CrossRef][PubMed]
    [Google Scholar]
  31. Thurnheer T., Köhler T., Cook A. M., Leisinger T.. ( 1986;). Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol132:1215–1220
    [Google Scholar]
  32. Vollrath F., Fairbrother W. J., Williams R. J. P., Tillinghast E. K., Bernstein D. T., Gallagher K. S., Townley M. A.. ( 1990;). Compounds in the droplets of the orb spider’s viscid spiral. Nature345:526–528 [CrossRef]
    [Google Scholar]
  33. Weinitschke S., Denger K., Cook A. M., Smits T. H. M.. ( 2007;). The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. Microbiology153:3055–3060 [CrossRef][PubMed]
    [Google Scholar]
  34. Weinitschke S., Hollemeyer K., Kusian B., Bowien B., Smits T. H. M., Cook A. M.. ( 2010a;). Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16. J Biol Chem285:35249–35254 [CrossRef][PubMed]
    [Google Scholar]
  35. Weinitschke S., Sharma P. I., Stingl U., Cook A. M., Smits T. H. M.. ( 2010b;). Gene clusters involved in isethionate degradation by terrestrial and marine bacteria. Appl Environ Microbiol76:618–621 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048462-0
Loading
/content/journal/micro/10.1099/mic.0.048462-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error