1887

Abstract

H16 (DSM 428), whose genome has been sequenced, was found to degrade -acetyltaurine as a sole source of carbon and energy for growth. Utilization of the compound was quantitative. The degradative pathway involved an inducible -acetyltaurine amidohydrolase (NaaS), which catalysed the cleavage of -acetyltaurine to acetate and taurine. The degradation of the latter compound is via an inducible, degradative pathway that involves taurine dehydrogenase [EC 1.4.2.–], sulfoacetaldehyde acetyltransferase [EC 2.3.3.15], phosphotransacetylase [EC 2.4.1.8], a sulfite exporter [TC 9.A.29.2.1] and sulfite dehydrogenase [EC 1.8.2.1]. Induction of the expression of representative gene products, encoded by at least four gene clusters, was confirmed biochemically. The acetate released by NaaS was activated to acetyl-CoA by an inducible acetate–CoA ligase [EC 6.2.1.1]. NaaS was purified to homogeneity; it had a value of 9.4 mM for -acetyltaurine, and it contained tightly bound Zn and Fe atoms. The denatured enzyme has a molecular mass of about 61 kDa (determined by SDS-PAGE) and the native enzyme was apparently monomeric. Peptide-mass fingerprinting identified the locus tag as H16_B0868 in a five-gene cluster, (H16_B0865–H16_B0869). The cluster presumably encodes a LysR-type transcriptional regulator (NaaR), a membrane protein (NaaO), a solute : sodium symporter-family permease [TC 2.A.21] (NaaP), the metal-dependent amidohydrolase (NaaS) and a putative metallochaperone (COG0523) (NaaT). Reverse-transcription PCR indicated that were inducibly transcribed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048462-0
2011-10-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2983.html?itemId=/content/journal/micro/10.1099/mic.0.048462-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baldock M. I. , Denger K. , Smits T. H. M. , Cook A. M. . ( 2007; ). Roseovarius sp. strain 217: aerobic taurine dissimilation via acetate kinase and acetate-CoA ligase. . FEMS Microbiol Lett 271:, 202–206. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brüggemann C. , Denger K. , Cook A. M. , Ruff J. . ( 2004; ). Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans . . Microbiology 150:, 805–816. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cook A. M. . ( 1987; ). Biodegradation of s-triazine xenobiotics. . FEMS Microbiol Rev 46:, 93–116. [CrossRef]
    [Google Scholar]
  5. Cook A. M. , Hütter R. . ( 1981; ). s-Triazines as nitrogen sources for bacteria. . J Agric Food Chem 29:, 1135–1143. [CrossRef]
    [Google Scholar]
  6. Denger K. , Ruff J. , Rein U. , Cook A. M. . ( 2001; ). Sulphoacetaldehyde sulpho-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. . Biochem J 357:, 581–586. [CrossRef] [PubMed]
    [Google Scholar]
  7. Denger K. , Weinitschke S. , Hollemeyer K. , Cook A. M. . ( 2004; ). Sulfoacetate generated by Rhodopseudomonas palustris from taurine. . Arch Microbiol 182:, 254–258. [CrossRef] [PubMed]
    [Google Scholar]
  8. Denger K. , Weinitschke S. , Smits T. H. M. , Schleheck D. , Cook A. M. . ( 2008; ). Bacterial sulfite dehydrogenases in organotrophic metabolism: separation and identification in Cupriavidus necator H16 and in Delftia acidovorans SPH-1. . Microbiology 154:, 256–263. [CrossRef] [PubMed]
    [Google Scholar]
  9. Denger K. , Mayer J. , Buhmann M. , Weinitschke S. , Smits T. H. M. , Cook A. M. . ( 2009; ). Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase. . J Bacteriol 191:, 5648–5656. [CrossRef] [PubMed]
    [Google Scholar]
  10. Faham S. , Watanabe A. , Besserer G. M. , Cascio D. , Specht A. , Hirayama B. A. , Wright E. M. , Abramson J. . ( 2008; ). The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. . Science 321:, 810–814. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gesellschaft Deutscher Chemiker ( 1996; ). German Standard Methods for the Laboratory Examination of Water, Waste Water and Sludge. Weinheim:: Verlag Chemie;.
    [Google Scholar]
  12. Gorzynska A. K. , Denger K. , Cook A. M. , Smits T. H. M. . ( 2006; ). Inducible transcription of genes involved in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3T . . Arch Microbiol 185:, 402–406. [CrossRef] [PubMed]
    [Google Scholar]
  13. Haas C. E. , Rodionov D. A. , Kropat J. , Malasarn D. , Merchant S. S. , de Crécy-Lagard V. . ( 2009; ). A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. . BMC Genomics 10:, 470. [CrossRef] [PubMed]
    [Google Scholar]
  14. Horowitz H. , Gilroy S. , Feinstein S. , Gilardi G. . ( 1990; ). Endocarditis associated with Comamonas acidovorans . . J Clin Microbiol 28:, 143–145.[PubMed]
    [Google Scholar]
  15. Huxtable R. J. . ( 1992; ). Physiological actions of taurine. . Physiol Rev 72:, 101–163.[PubMed]
    [Google Scholar]
  16. Krejčík Z. . ( 2009; ). Taurine-nitrogen utilized by bacteria: a diverse set of phenomena, PhD thesis, Department of Biochemistry and Microbiology, Prague Institute of Chemical Technology.
  17. Krejčík Z. , Denger K. , Weinitschke S. , Hollemeyer K. , Pačes V. , Cook A. M. , Smits T. H. M. . ( 2008; ). Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. . Arch Microbiol 190:, 159–168. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kuchar J. , Hausinger R. P. . ( 2004; ). Biosynthesis of metal sites. . Chem Rev 104:, 509–526. [CrossRef] [PubMed]
    [Google Scholar]
  19. Laemmli U. K. . ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227:, 680–685. [CrossRef] [PubMed]
    [Google Scholar]
  20. Laue H. , Denger K. , Cook A. M. . ( 1997; ). Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. . Appl Environ Microbiol 63:, 2016–2021.[PubMed]
    [Google Scholar]
  21. le Maire M. , Ghasi A. , Møller J. V. . ( 1996; ). Gel chromatography as an analytical tool for characterization of size and molecular mass of proteins. . ACS Symp Ser 635:, 36–51. [CrossRef]
    [Google Scholar]
  22. Mayer J. , Cook A. M. . ( 2009; ). Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway. . J Bacteriol 191:, 6052–6058. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mayer J. , Denger K. , Smits T. H. M. , Hollemeyer K. , Groth U. , Cook A. M. . ( 2006; ). N-acetyltaurine dissimilated via taurine by Delftia acidovorans NAT. . Arch Microbiol 186:, 61–67. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mayer J. , Denger K. , Kaspar K. , Hollemeyer K. , Smits T. H. M. , Huhn T. , Cook A. M. . ( 2008; ). Assimilation of homotaurine-nitrogen by Burkholderia sp. and excretion of sulfopropanoate. . FEMS Microbiol Lett 279:, 77–82. [CrossRef] [PubMed]
    [Google Scholar]
  25. Nawaz M. S. , Khan A. A. , Bhattacharayya D. , Siitonen P. H. , Cerniglia C. E. . ( 1996; ). Physical, biochemical, and immunological characterization of a thermostable amidase from Klebsiella pneumoniae NCTR 1. . J Bacteriol 178:, 2397–2401.[PubMed]
    [Google Scholar]
  26. Racker E. . ( 1962; ). Fructose-6-phosphate phosphoketolase from Acetobacter xylinum . . Methods Enzymol 5:, 276–280. [CrossRef]
    [Google Scholar]
  27. Reichenbecher W. , Kelly D. P. , Murrell J. C. . ( 1999; ). Desulfonation of propanesulfonic acid by comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. . Arch Microbiol 172:, 387–392. [CrossRef] [PubMed]
    [Google Scholar]
  28. Reizer J. , Reizer A. , Saier M. H. Jr . ( 1994; ). A functional superfamily of sodium/solute symporters. . Biochim Biophys Acta 1197:, 133–166.[PubMed] [CrossRef]
    [Google Scholar]
  29. Ruff J. , Denger K. , Cook A. M. . ( 2003; ). Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. . Biochem J 369:, 275–285. [CrossRef] [PubMed]
    [Google Scholar]
  30. Sörbo B. . ( 1987; ). Sulfate: turbidimetric and nephelometric methods. . Methods Enzymol 143:, 3–6. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thurnheer T. , Köhler T. , Cook A. M. , Leisinger T. . ( 1986; ). Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. . J Gen Microbiol 132:, 1215–1220.
    [Google Scholar]
  32. Vollrath F. , Fairbrother W. J. , Williams R. J. P. , Tillinghast E. K. , Bernstein D. T. , Gallagher K. S. , Townley M. A. . ( 1990; ). Compounds in the droplets of the orb spider’s viscid spiral. . Nature 345:, 526–528. [CrossRef]
    [Google Scholar]
  33. Weinitschke S. , Denger K. , Cook A. M. , Smits T. H. M. . ( 2007; ). The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. . Microbiology 153:, 3055–3060. [CrossRef] [PubMed]
    [Google Scholar]
  34. Weinitschke S. , Hollemeyer K. , Kusian B. , Bowien B. , Smits T. H. M. , Cook A. M. . ( 2010a; ). Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16. . J Biol Chem 285:, 35249–35254. [CrossRef] [PubMed]
    [Google Scholar]
  35. Weinitschke S. , Sharma P. I. , Stingl U. , Cook A. M. , Smits T. H. M. . ( 2010b; ). Gene clusters involved in isethionate degradation by terrestrial and marine bacteria. . Appl Environ Microbiol 76:, 618–621. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048462-0
Loading
/content/journal/micro/10.1099/mic.0.048462-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2983 - 2991

[ PDF, 283 kb], including: Oligonucleotides used in RT-PCR experiments Clusters of genes similar to that found in DSS-3 Clusters of genes which are interpreted to encode a tripartite, ATP-independent (TRAP) transporter for -acetyltaurine Clusters of genes which are hypothesized to include an unrecognized, multiple-component transport system including a periplasmic binding protein (PBP) Dendrogram of some Zn- (NaaT-like), Co- (CobW-type) and Ni- (Nha-like) metallochaperones in COG0523 Representative RT-PCR data for the inducible transcription of and in DSS-3 with a map of the relevant gene cluster



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error