1887

Abstract

Tetracyclines are clinically important aromatic polyketides whose biosynthesis is catalysed by bacterial type II polyketide synthases (PKSs). Tetracyclines are biosynthesized starting with an amide-containing malonamate starter unit and the resulting C-2 carboxyamide is critical for the antibiotic activities. In this work, we genetically verified that an amidotransferase, OxyD, and a thiolase, OxyP, are involved in the biosynthesis and incorporation of the starter unit. First, two mutations, R248T and D268N, were found to be present in OxyD* encoded in ATCC 13224, a strain that produces the acetate-primed 2-acetyl-2-decarboxyamido-oxytetracycline (ADOTC) instead of the malonamate-primed oxytetracycline (OTC). Homology modelling suggested that in particular D268N may inactivate OxyD. Complementation of ATCC 13224 with wild-type OxyD restored OTC biosynthesis, thereby confirming the essential role of OxyD in the synthesis of the amide starter unit. Second, using a series of knockout and complementation approaches, we demonstrated that OxyP is most likely involved in maintaining fidelity of the amide-priming process via hydrolysis of the competing acetate priming starter units. While the inactivation of OxyP does not eliminate OTC biosynthesis, the ratio of acetate-primed ADOTC to malonamate-primed OTC is significantly increased. This suggests that OxyP plays an ancillary role in OTC biosynthesis and is important for minimizing the levels of ADOTC, a shunt product that has much weaker antibiotic activities than OTC.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048439-0
2011-08-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2401.html?itemId=/content/journal/micro/10.1099/mic.0.048439-0&mimeType=html&fmt=ahah

References

  1. Bennett-Lovsey R. M., Herbert A. D., Sternberg M. J. E., Kelley L. A.. ( 2008;). Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins70:611–625 [CrossRef][PubMed]
    [Google Scholar]
  2. Bililign T., Hyun C. G., Williams J. S., Czisny A. M., Thorson J. S.. ( 2004;). The hedamycin locus implicates a novel aromatic PKS priming mechanism. Chem Biol11:959–969 [CrossRef][PubMed]
    [Google Scholar]
  3. Chen Y. H., Wendt-Pienkowski E., Ju J. H., Lin S. J., Rajski S. R., Shen B.. ( 2010;). Characterization of FdmV as an amide synthetase for fredericamycin A biosynthesis in Streptomyces griseus ATCC 43944. J Biol Chem285:38853–38860 [CrossRef][PubMed]
    [Google Scholar]
  4. Chopra I., Roberts M.. ( 2001;). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev65:232–260 [CrossRef][PubMed]
    [Google Scholar]
  5. Church R. F. R., Schaub R. E., Weiss M. J.. ( 1971;). Synthesis of 7-dimethylamino-6-demethyl-6-deoxytetracycline (minocycline) via 9-nitro-6-demethyl-6-deoxytetracycline. J Org Chem36:723–725 [CrossRef][PubMed]
    [Google Scholar]
  6. Das A., Khosla C.. ( 2009;). In vivo and in vitro analysis of the hedamycin polyketide synthase. Chem Biol16:1197–1207 [CrossRef][PubMed]
    [Google Scholar]
  7. Doumith M., Weingarten P., Wehmeier U. F., Salah-Bey K., Benhamou B., Capdevila C., Michel J. M., Piepersberg W., Raynal M. C.. ( 2000;). Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea . Mol Gen Genet264:477–485 [CrossRef][PubMed]
    [Google Scholar]
  8. Fu H., Ebertkhosla S., Hopwood D. A., Khosla C.. ( 1994;). Relaxed specificity of the oxytetracycline polyketide synthase for an acetate primer in the absence of a malonamyl primer. J Am Chem Soc116:6443–6444 [CrossRef]
    [Google Scholar]
  9. Grimm A., Madduri K., Ali A., Hutchinson C. R.. ( 1994;). Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene151:1–10 [CrossRef][PubMed]
    [Google Scholar]
  10. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F.. ( 2003;). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A100:1541–1546 [CrossRef][PubMed]
    [Google Scholar]
  11. He Y. L., Wang Z. J., Bai L. Q., Liang J. D., Zhou X. F., Deng Z. X.. ( 2010;). Two pHZ1358-derivative vectors for efficient gene knockout in Streptomyces . J Microbiol Biotechnol20:678–682 [CrossRef][PubMed]
    [Google Scholar]
  12. Hertweck C.. ( 2009;). The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl48:4688–4716 [CrossRef][PubMed]
    [Google Scholar]
  13. Hertweck C., Luzhetskyy A., Rebets Y., Bechthold A.. ( 2007;). Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep24:162–190 [CrossRef][PubMed]
    [Google Scholar]
  14. Hochstein F. A., Vonwittenau M. S., Tanner F. W., Murai K.. ( 1960;). 2-Acetyl-2-decarboxamidooxytetracycline. J Am Chem Soc82:5934–5937 [CrossRef]
    [Google Scholar]
  15. Kalaitzis J. A., Cheng Q., Meluzzi D., Xiang L., Izumikawa M., Dorrestein P. C., Moore B. S.. ( 2011;). Policing starter unit selection of the enterocin type II polyketide synthase by the type II thioesterase EncL. Bioorg Med Chem [CrossRef][PubMed]
    [Google Scholar]
  16. Kersey R. C.. ( 1950;). A turbidimetric assay for terramycin. J Am Pharm Assoc Am Pharm Assoc39:252–253 [CrossRef][PubMed]
    [Google Scholar]
  17. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  18. Kim B. C., Lee J. M., Ahn J. S., Kim B. S.. ( 2007;). Cloning, sequencing, and characterization of the pradimicin biosynthetic gene cluster of Actinomadura hibisca P157-2. J Microbiol Biotechnol17:830–839[PubMed]
    [Google Scholar]
  19. Lancini G. C., Sensi P.. ( 1964;). Isolation of 2-acetyl-2-decarboxamidotetracycline from cultures of Streptomyces psammoticus . Experientia20:83–84 [CrossRef][PubMed]
    [Google Scholar]
  20. Larsen T. M., Boehlein S. K., Schuster S. M., Richards N. G. J., Thoden J. B., Holden H. M., Rayment I.. ( 1999;). Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. Biochemistry38:16146–16157 [CrossRef][PubMed]
    [Google Scholar]
  21. Lykkeberg A. K., Sengeløv G., Cornett C., Tjørnelund J., Hansen S. H., Halling-Sørensen B.. ( 2004;). Isolation, structural elucidation and in vitro activity of 2-acetyl-2-decarboxamido-oxytetracycline against environmental relevant bacteria, including tetracycline-resistant bacteria. J Pharm Biomed Anal34:559–567 [CrossRef][PubMed]
    [Google Scholar]
  22. Martell M. J. Jr, Boothe J. H.. ( 1967;). The 6-deoxytetracyclines. VII. Alkylated aminotetracyclines possessing unique antibacterial activity. J Med Chem10:44–46 [CrossRef][PubMed]
    [Google Scholar]
  23. Marti T., Hu Z. H., Pohl N. L., Shah A. N., Khosla C.. ( 2000;). Cloning, nucleotide sequence, and heterologous expression of the biosynthetic gene cluster for R1128, a non-steroidal estrogen receptor antagonist. Insights into an unusual priming mechanism. J Biol Chem275:33443–33448 [CrossRef][PubMed]
    [Google Scholar]
  24. Martin R., Sterner O., Alvarez M. A., de Clercq E., Bailey J. E., Minas W.. ( 2001;). Collinone, a new recombinant angular polyketide antibiotic made by an engineered Streptomyces strain. J Antibiot (Tokyo)54:239–249[PubMed][CrossRef]
    [Google Scholar]
  25. McDowall K. J., Doyle D., Butler M. J., Binnie C., Warren M., Hunter I. S.. ( 1991;). Molecular genetics of oxytetracycline production by Streptomyces rimosus . Genetics and Product Formation in Streptomyces105–116 Baumberg H. K. G. S., Noack D.. New York: Plenum Press;[CrossRef]
    [Google Scholar]
  26. Milman H. A., Cooney D. A.. ( 1979;). Partial purification and properties of l-asparagine synthetase from mouse pancreas. Biochem J181:51–59[PubMed]
    [Google Scholar]
  27. Paget M. S. B., Chamberlin L., Atrih A., Foster S. J., Buttner M. J.. ( 1999;). Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol181:204–211[PubMed]
    [Google Scholar]
  28. Pickens L. B., Kim W., Wang P., Zhou H., Watanabe K., Gomi S., Tang Y.. ( 2009;). Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575. J Am Chem Soc131:17677–17689 [CrossRef][PubMed]
    [Google Scholar]
  29. Piel J., Hertweck C., Shipley P. R., Hunt D. M., Newman M. S., Moore B. S.. ( 2000;). Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate ‘Streptomyces maritimus’: evidence for the derailment of an aromatic polyketide synthase. Chem Biol7:943–955 [CrossRef][PubMed]
    [Google Scholar]
  30. Richards N. G. J., Schuster S. M.. ( 1998;). Mechanistic issues in asparagine synthetase catalysis. Advances in Enzymologyvol. 72145–198 Punch D. L.. New York: Wiley;
    [Google Scholar]
  31. Ryan M. J., Lotvin J. A., Strathy N., Fantini S. E.. ( 1996;). Cloning of the biosynthetic pathway for chlortetracycline and tetracycline formation and cosmids useful therein.
  32. Serre L., Verbree E. C., Dauter Z., Stuitje A. R., Derewenda Z. S.. ( 1995;). The Escherichia coli malonyl-CoA : acyl carrier protein transacylase at 1.5-Å resolution. Crystal structure of a fatty acid synthase component. J Biol Chem270:12961–12964[PubMed][CrossRef]
    [Google Scholar]
  33. Sum P. E., Lee V. J., Testa R. T., Hlavka J. J., Ellestad G. A., Bloom J. D., Gluzman Y., Tally F. P.. ( 1994;). Glycylcyclines. 1. A new generation of potent antibacterial agents through modification of 9-aminotetracyclines. J Med Chem37:184–188 [CrossRef][PubMed]
    [Google Scholar]
  34. Tang Y., Koppisch A. T., Khosla C.. ( 2004;). The acyltransferase homologue from the initiation module of the R1128 polyketide synthase is an acyl-ACP thioesterase that edits acetyl primer units. Biochemistry43:9546–9555 [CrossRef][PubMed]
    [Google Scholar]
  35. Tanner F. W. Jr, Gales F., Hochstein F. A., Kotaro M.. ( 1962;). Antibiotics and processes.
  36. Thomas R., Williams D. J.. ( 1983;). Oxytetracycline biosynthesis – origin of the carboxamide substituent. J Chem Soc Chem Commun12677–679 [CrossRef]
    [Google Scholar]
  37. Wendt-Pienkowski E., Huang Y., Zhang J., Li B. S., Jiang H., Kwon H. J., Hutchinson C. R., Shen B.. ( 2005;). Cloning, sequencing, analysis, and heterologous expression of the fredericamycin biosynthetic gene cluster from Streptomyces griseus . J Am Chem Soc127:16442–16452 [CrossRef][PubMed]
    [Google Scholar]
  38. Ye J. S., Dickens M. L., Plater R., Li Y., Lawrence J., Strohl W. R.. ( 1994;). Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. J Bacteriol176:6270–6280[PubMed]
    [Google Scholar]
  39. Zaleta-Rivera K., Charkoudian L. K., Ridley C. P., Khosla C.. ( 2010;). Cloning, sequencing, heterologous expression, and mechanistic analysis of A-74528 biosynthesis. J Am Chem Soc132:9122–9128 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhan J. X., Qiao K. J., Tang Y.. ( 2009;). Investigation of tailoring modifications in pradimicin biosynthesis. ChemBioChem10:1447–1452 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang W., Ames B. D., Tsai S. C., Tang Y.. ( 2006;). Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl Environ Microbiol72:2573–2580 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048439-0
Loading
/content/journal/micro/10.1099/mic.0.048439-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error