1887

Abstract

In different, phylogenetically unrelated micro-organisms, glycolytic enzymes play a dual role. In the cytosol they are involved in metabolic reactions whereas the surface-localized fraction of the enzymes contributes to adhesion and virulence. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a typical member of this group of multifunctional proteins. In this study, we characterized the GAPDH of , a common pathogen of the human respiratory mucosa. Full-length GAPDH of was successfully expressed and used to produce a polyclonal antiserum. By immunofluorescence, colony blot and ELISA experiments with different fractions of the proteins, GAPDH was demonstrated to be present in the cytosol and at even higher concentrations at the surface of mycoplasmas. Nevertheless, antibodies against recombinant GAPDH were not detected in sera of immunized animals or of patients with confirmed infection. Recombinant GAPDH bound to different human cell lines in a concentration-dependent manner, and binding was inhibited by specific anti-GAPDH serum. In contrast, this antiserum did not significantly influence the adherence of to HeLa cells. When different human extracellular matrix proteins were tested in Western blot assays, GAPDH bound to fibrinogen. The results showed that the GAPDH of is a member of the family of cytosol-localized glycolytic enzymes, which also occur at the surface of the bacterium, and mediates interactions with the extracellular matrix proteins of the human host. Thus, the surface-exposed fraction of GAPDH may be a factor that contributes to the successful colonization of the human respiratory tract by .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048298-0
2011-08-01
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2328.html?itemId=/content/journal/micro/10.1099/mic.0.048298-0&mimeType=html&fmt=ahah

References

  1. Alvarez R. A., Blaylock M. W., Baseman J. B.. ( 2003;). Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol Microbiol48:1417–1425 [CrossRef][PubMed]
    [Google Scholar]
  2. Balasubramanian S., Kannan T. R., Hart P. J., Baseman J. B.. ( 2009;). Amino acid changes in elongation factor Tu of Mycoplasma pneumoniae and Mycoplasma genitalium influence fibronectin binding. Infect Immun77:3533–3541 [CrossRef][PubMed]
    [Google Scholar]
  3. Barbosa M. S., Báo S. N., Andreotti P. F., de Faria F. P., Felipe M. S., dos Santos Feitosa L., Mendes-Giannini M. J., Soares C. M.. ( 2006;). Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect Immun74:382–389 [CrossRef][PubMed]
    [Google Scholar]
  4. Bendtsen J. D., Kiemer L., Fausbøll A., Brunak S.. ( 2005;). Non-classical protein secretion in bacteria. BMC Microbiol5:58 [CrossRef][PubMed]
    [Google Scholar]
  5. Bergmann S., Rohde M., Hammerschmidt S.. ( 2004;). Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun72:2416–2419 [CrossRef][PubMed]
    [Google Scholar]
  6. Boël G., Jin H., Pancholi V.. ( 2005;). Inhibition of cell surface export of group A streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. Infect Immun73:6237–6248 [CrossRef][PubMed]
    [Google Scholar]
  7. Chumchua V., Pornputtapong N., Thammarongtham C., Meksuriyen D.. ( 2008;). Homology modeling of Mycoplasma pneumoniae enolase and its molecular interaction with human plasminogen. Bioinformation3:18–23[PubMed][CrossRef]
    [Google Scholar]
  8. Dallo S. F., Kannan T. R., Blaylock M. W., Baseman J. B.. ( 2002;). Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae . Mol Microbiol46:1041–1051 [CrossRef][PubMed]
    [Google Scholar]
  9. Dandekar T., Huynen M., Regula J. T., Ueberle B., Zimmermann C. U., Andrade M. A., Doerks T., Sánchez-Pulido L., Snel B. et al. ( 2000;). Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res28:3278–3288 [CrossRef][PubMed]
    [Google Scholar]
  10. Delgado M. L., Gil M. L., Gozalbo D.. ( 2003;). Starvation and temperature upshift cause an increase in the enzymatically active cell wall-associated glyceraldehyde-3-phosphate dehydrogenase protein in yeast. FEMS Yeast Res4:297–303 [CrossRef][PubMed]
    [Google Scholar]
  11. Dumke R., Catrein I., Pirkil E., Herrmann R., Jacobs E.. ( 2003;). Subtyping of Mycoplasma pneumoniae isolates based on extended genome sequencing and on expression profiles. Int J Med Microbiol292:513–525 [CrossRef][PubMed]
    [Google Scholar]
  12. Dumke R., Von Baum H., Lück P. C., Jacobs E.. ( 2010;). Subtypes and variants of Mycoplasma pneumoniae: local and temporal changes in Germany 2003-2006 and absence of a correlation between the genotype in the respiratory tract and the occurrence of genotype-specific antibodies in the sera of infected patients. Epidemiol Infect138:1829–1837 [CrossRef][PubMed]
    [Google Scholar]
  13. Dutow P., Schmidl S. R., Ridderbusch M., Stülke J.. ( 2010;). Interactions between glycolytic enzymes of Mycoplasma pneumoniae . J Mol Microbiol Biotechnol19:134–139 [CrossRef][PubMed]
    [Google Scholar]
  14. Egea L., Aguilera L., Giménez R., Sorolla M. A., Aguilar J., Badía J., Baldoma L.. ( 2007;). Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int J Biochem Cell Biol39:1190–1203 [CrossRef][PubMed]
    [Google Scholar]
  15. Eun B. W., Kim N. H., Choi E. H., Lee H. J.. ( 2008;). Mycoplasma pneumoniae in Korean children: the epidemiology of pneumonia over an 18-year period. J Infect56:326–331 [CrossRef][PubMed]
    [Google Scholar]
  16. Gozalbo D., Gil-Navarro I., Azorín I., Renau-Piqueras J., Martínez J. P., Gil M. L.. ( 1998;). The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun66:2052–2059[PubMed]
    [Google Scholar]
  17. Hames C., Halbedel S., Schilling O., Stülke J.. ( 2005;). Multiple-mutation reaction: a method for simultaneous introduction of multiple mutations into the glpK gene of Mycoplasma pneumoniae . Appl Environ Microbiol71:4097–4100 [CrossRef][PubMed]
    [Google Scholar]
  18. Herrmann R., Reiner B.. ( 1998;). Mycoplasma pneumoniae and Mycoplasma genitalium: a comparison of two closely related bacterial species. Curr Opin Microbiol1:572–579 [CrossRef][PubMed]
    [Google Scholar]
  19. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B. C., Herrmann R.. ( 1996;). Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae . Nucleic Acids Res24:4420–4449 [CrossRef][PubMed]
    [Google Scholar]
  20. Hoelzle L. E., Hoelzle K., Helbling M., Aupperle H., Schoon H. A., Ritzmann M., Heinritzi K., Felder K. M., Wittenbrink M. M.. ( 2007;). MSG1, a surface-localised protein of Mycoplasma suis is involved in the adhesion to erythrocytes. Microbes Infect9:466–474 [CrossRef][PubMed]
    [Google Scholar]
  21. Kannan T. R., Baseman J. B.. ( 2006;). ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. Proc Natl Acad Sci U S A103:6724–6729 [CrossRef][PubMed]
    [Google Scholar]
  22. Kinoshita H., Uchida H., Kawai Y., Kawasaki T., Wakahara N., Matsuo H., Watanabe M., Kitazawa H., Ohnuma S. et al. ( 2008;). Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol104:1667–1674 [CrossRef][PubMed]
    [Google Scholar]
  23. Klement E., Talkington D. F., Wasserzug O., Kayouf R., Davidovitch N., Dumke R., Bar-Zeev Y., Ron M., Boxman J. et al. ( 2006;). Identification of risk factors for infection in an outbreak of Mycoplasma pneumoniae respiratory tract disease. Clin Infect Dis43:1239–1245 [CrossRef][PubMed]
    [Google Scholar]
  24. Krause D. C., Balish M. F.. ( 2004;). Cellular engineering in a minimal microbe: structure and assembly of the terminal organelle of Mycoplasma pneumoniae . Mol Microbiol51:917–924 [CrossRef][PubMed]
    [Google Scholar]
  25. Lama A., Kucknoor A., Mundodi V., Alderete J. F.. ( 2009;). Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated, fibronectin-binding protein of Trichomonas vaginalis . Infect Immun77:2703–2711 [CrossRef][PubMed]
    [Google Scholar]
  26. Lind K., Benzon M. W., Jensen J. S., Clyde W. A. Jr. ( 1997;). A seroepidemiological study of Mycoplasma pneumoniae infections in Denmark over the 50-year period 1946–1995. Eur J Epidemiol13:581–586 [CrossRef][PubMed]
    [Google Scholar]
  27. Madureira P., Baptista M., Vieira M., Magalhães V., Camelo A., Oliveira L., Ribeiro A., Tavares D., Trieu-Cuot P. et al. ( 2007;). Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. J Immunol178:1379–1387[PubMed][CrossRef]
    [Google Scholar]
  28. May M., Papazisi L., Gorton T. S., Geary S. J.. ( 2006;). Identification of fibronectin-binding proteins in Mycoplasma gallisepticum strain R. Infect Immun74:1777–1785 [CrossRef][PubMed]
    [Google Scholar]
  29. Miyata M.. ( 2010;). Unique centipede mechanism of Mycoplasma gliding. Annu Rev Microbiol64:519–537 [CrossRef][PubMed]
    [Google Scholar]
  30. Nagata H., Iwasaki M., Maeda K., Kuboniwa M., Hashino E., Toe M., Minamino N., Kuwahara H., Shizukuishi S.. ( 2009;). Identification of the binding domain of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase for Porphyromonas gingivalis major fimbriae. Infect Immun77:5130–5138 [CrossRef][PubMed]
    [Google Scholar]
  31. Narita M.. ( 2010;). Pathogenesis of extrapulmonary manifestations of Mycoplasma pneumoniae infection with special reference to pneumonia. J Infect Chemother16:162–169 [CrossRef][PubMed]
    [Google Scholar]
  32. Pancholi V., Chhatwal G. S.. ( 2003;). Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol293:391–401 [CrossRef][PubMed]
    [Google Scholar]
  33. Pancholi V., Fischetti V. A.. ( 1992;). A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med176:415–426 [CrossRef][PubMed]
    [Google Scholar]
  34. Proft T., Herrmann R.. ( 1994;). Identification and characterization of hitherto unknown Mycoplasma pneumoniae proteins. Mol Microbiol13:337–348 [CrossRef][PubMed]
    [Google Scholar]
  35. Purves J., Cockayne A., Moody P. C. E., Morrissey J. A.. ( 2010;). Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues GapA and GapB in Staphylococcus aureus . Infect Immun78:5223–5232 [CrossRef][PubMed]
    [Google Scholar]
  36. Regula J. T., Boguth G., Görg A., Hegermann J., Mayer F., Frank R., Herrmann R.. ( 2001;). Defining the mycoplasma ‘cytoskeleton’: the protein composition of the Triton X-100 insoluble fraction of the bacterium Mycoplasma pneumoniae determined by 2-D gel electrophoresis and mass spectrometry. Microbiology147:1045–1057[PubMed]
    [Google Scholar]
  37. Schmidl S. R., Gronau K., Pietack N., Hecker M., Becher D., Stülke J.. ( 2010;). The phosphoproteome of the minimal bacterium Mycoplasma pneumoniae: analysis of the complete known Ser/Thr kinome suggests the existence of novel kinases. Mol Cell Proteomics9:1228–1242 [CrossRef][PubMed]
    [Google Scholar]
  38. Schurwanz N., Jacobs E., Dumke R.. ( 2009;). Strategy to create chimeric proteins derived from functional adhesin regions of Mycoplasma pneumoniae for vaccine development. Infect Immun77:5007–5015 [CrossRef][PubMed]
    [Google Scholar]
  39. Søgaard I. Z., Boesen T., Mygind T., Melkova R., Birkelund S., Christiansen G., Schierup M. H.. ( 2002;). Recombination in Mycoplasma hominis . Infect Genet Evol1:277–285 [CrossRef][PubMed]
    [Google Scholar]
  40. Tunio S. A., Oldfield N. J., Ala’Aldeen D. A., Wooldridge K. G., Turner D. P.. ( 2010a;). The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells. BMC Microbiol10:280 [CrossRef][PubMed]
    [Google Scholar]
  41. Tunio S. A., Oldfield N. J., Berry A., Ala’Aldeen D. A., Wooldridge K. G., Turner D. P. J.. ( 2010b;). The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol Microbiol76:605–615 [CrossRef][PubMed]
    [Google Scholar]
  42. von Baum H., Welte T., Marre R., Suttorp N., Lück C., Ewig S.. ( 2009;). Mycoplasma pneumoniae pneumonia revisited within the German Competence Network for Community-acquired pneumonia (CAPNETZ). BMC Infect Dis9:62 [CrossRef][PubMed]
    [Google Scholar]
  43. Waites K. B., Talkington D. F.. ( 2004;). Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev17:697–728 [CrossRef][PubMed]
    [Google Scholar]
  44. Wilkins J. C., Beighton D., Homer K. A.. ( 2003;). Effect of acidic pH on expression of surface-associated proteins of Streptococcus oralis . Appl Environ Microbiol69:5290–5296 [CrossRef][PubMed]
    [Google Scholar]
  45. Yavlovich A., Rechnitzer H., Rottem S.. ( 2007;). α-enolase resides on the cell surface of Mycoplasma fermentans and binds plasminogen. Infect Immun75:5716–5719 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048298-0
Loading
/content/journal/micro/10.1099/mic.0.048298-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error