1887

Abstract

The interplay between Fur (ferric uptake regulator) proteins and small, non-coding RNAs has been described as a key regulatory loop in several bacteria. In the filamentous cyanobacterium sp. PCC 7120, a large dicistronic transcript encoding the putative membrane protein Alr1690 and an α- RNA is involved in the modulation of the global regulator FurA. In this work we report the existence of three novel antisense RNAs in cyanobacteria and show that a α- RNA is conserved in very different genomic contexts, namely in the unicellular cyanobacteria PCC 7806 and sp. PCC 6803. Syα- RNA covers only part of the coding sequence of the orthologue , whose flanking genes encode two hypothetical proteins. Transcriptional analysis of and its adjacent genes in unravels a highly compact organization of this locus involving overlapping transcripts. Maα- RNA spans the whole Ma CDS and part of the flanking and sequences. In addition, Ma seems to be part of a dicistronic operon encoding this regulator and an α- RNA. These results allow new insights into the transcriptomes of two unicellular cyanobacteria and suggest that in PCC 7806, the α- α- RNAs might participate in a regulatory connection between the genes of the locus.

Funding
This study was supported by the:
  • Spanish Ministerio de Ciencia y Tecnología (Award BFU2009-07424)
  • Fundación La Caixa-Diputación General de Aragón (Award 2009/00372)
  • Fondos Feder 2007-2013
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048231-0
2011-12-01
2021-05-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3398.html?itemId=/content/journal/micro/10.1099/mic.0.048231-0&mimeType=html&fmt=ahah

References

  1. Axmann I. M., Kensche P., Vogel J., Kohl S., Herzel H., Hess W. R. ( 2005). Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biol 6:R73 [CrossRef][PubMed]
    [Google Scholar]
  2. Bagg A., Neilands J. B. ( 1987). Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli . Biochemistry 26:5471–5477 [CrossRef][PubMed]
    [Google Scholar]
  3. Dühring U., Axmann I. M., Hess W. R., Wilde A. ( 2006). An internal antisense RNA regulates expression of the photosynthesis gene isiA . Proc Natl Acad Sci U S A 103:7054–7058 [CrossRef][PubMed]
    [Google Scholar]
  4. Fuangthong M., Herbig A. F., Bsat N., Helmann J. D. ( 2002). Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol 184:3276–3286 [CrossRef][PubMed]
    [Google Scholar]
  5. Hernández J. A., López-Gomollón S., Bes M. T., Fillat M. F., Peleato M. L. ( 2004). Three fur homologues from Anabaena sp. PCC7120: exploring reciprocal protein-promoter recognition. FEMS Microbiol Lett 236:275–282 [CrossRef][PubMed]
    [Google Scholar]
  6. Hernández J. A., Muro-Pastor A. M., Flores E., Bes M. T., Peleato M. L., Fillat M. F. ( 2006). Identification of a furA cis antisense RNA in the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 355:325–334 [CrossRef][PubMed]
    [Google Scholar]
  7. Hernández J. A., Alonso I., Pellicer S., Luisa Peleato M., Cases R., Strasser R. J., Barja F., Fillat M. F. ( 2010). Mutants of Anabaena sp. PCC 7120 lacking alr1690 and α-furA antisense RNA show a pleiotropic phenotype and altered photosynthetic machinery. J Plant Physiol 167:430–437 [CrossRef][PubMed]
    [Google Scholar]
  8. Koide T., Reiss D. J., Bare J. C., Pang W. L., Facciotti M. T., Schmid A. K., Pan M., Marzolf B., Van P. T. et al. & other authors ( 2009). Prevalence of transcription promoters within archaeal operons and coding sequences. Mol Syst Biol 5:285 [CrossRef][PubMed]
    [Google Scholar]
  9. López-Gomollón S., Hernández J. A., Pellicer S., Angarica V. E., Peleato M. L., Fillat M. F. ( 2007). Cross-talk between iron and nitrogen regulatory networks in Anabaena (Nostoc) sp. PCC 7120: identification of overlapping genes in FurA and NtcA regulons. J Mol Biol 374:267–281 [CrossRef][PubMed]
    [Google Scholar]
  10. Martín-Luna B., Hernández J. A., Bes M. T., Fillat M. F., Peleato M. L. ( 2006). Identification of a ferric uptake regulator from Microcystis aeruginosa PCC7806. FEMS Microbiol Lett 254:63–70 [CrossRef][PubMed]
    [Google Scholar]
  11. Massé E., Gottesman S. ( 2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli . Proc Natl Acad Sci U S A 99:4620–4625 [CrossRef][PubMed]
    [Google Scholar]
  12. Mitschke J., Georg J., Scholz I., Sharma C. M., Dienst D., Bantscheff J., Voß B., Steglich C., Wilde A. et al. & other authors ( 2011). An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 108:2124–2129 [CrossRef][PubMed]
    [Google Scholar]
  13. Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M. ( 2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349 [CrossRef][PubMed]
    [Google Scholar]
  14. Outten F. W., Wood M. J., Munoz F. M., Storz G. ( 2003). The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli . J Biol Chem 278:45713–45719 [CrossRef][PubMed]
    [Google Scholar]
  15. Outten F. W., Djaman O., Storz G. ( 2004). A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli . Mol Microbiol 52:861–872 [CrossRef][PubMed]
    [Google Scholar]
  16. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stainer R. Y. ( 1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61 [CrossRef]
    [Google Scholar]
  17. Seki A., Nakano T., Takahashi H., Matsumoto K., Ikeuchi M., Tanaka K. ( 2006). Light-responsive transcriptional regulation of the suf promoters involved in cyanobacterium Synechocystis sp. PCC 6803 Fe-S cluster biogenesis. FEBS Lett 580:5044–5048 [CrossRef][PubMed]
    [Google Scholar]
  18. Sola-Landa A., Rodríguez-García A., Franco-Domínguez E., Martín J. F. ( 2005). Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56:1373–1385 [CrossRef][PubMed]
    [Google Scholar]
  19. Večerek B., Moll I., Bläsi U. ( 2007). Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J 26:965–975 [CrossRef][PubMed]
    [Google Scholar]
  20. Voß B., Georg J., Schön V., Ude S., Hess W. R. ( 2009). Biocomputational prediction of non-coding RNAs in model cyanobacteria. BMC Genomics 10:123 [CrossRef][PubMed]
    [Google Scholar]
  21. Waldbeser L. S., Chen Q., Crosa J. H. ( 1995). Antisense RNA regulation of the fatB iron transport protein gene in Vibrio anguillarum . Mol Microbiol 17:747–756 [CrossRef][PubMed]
    [Google Scholar]
  22. Waters L. S., Storz G. ( 2009). Regulatory RNAs in bacteria. Cell 136:615–628 [CrossRef][PubMed]
    [Google Scholar]
  23. Zhang Z., Gosset G., Barabote R., Gonzalez C. S., Cuevas W. A., Saier M. H. Jr ( 2005). Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli . J Bacteriol 187:980–990 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048231-0
Loading
/content/journal/micro/10.1099/mic.0.048231-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error