1887

Abstract

The interplay between Fur (ferric uptake regulator) proteins and small, non-coding RNAs has been described as a key regulatory loop in several bacteria. In the filamentous cyanobacterium sp. PCC 7120, a large dicistronic transcript encoding the putative membrane protein Alr1690 and an α- RNA is involved in the modulation of the global regulator FurA. In this work we report the existence of three novel antisense RNAs in cyanobacteria and show that a α- RNA is conserved in very different genomic contexts, namely in the unicellular cyanobacteria PCC 7806 and sp. PCC 6803. Syα- RNA covers only part of the coding sequence of the orthologue , whose flanking genes encode two hypothetical proteins. Transcriptional analysis of and its adjacent genes in unravels a highly compact organization of this locus involving overlapping transcripts. Maα- RNA spans the whole Ma CDS and part of the flanking and sequences. In addition, Ma seems to be part of a dicistronic operon encoding this regulator and an α- RNA. These results allow new insights into the transcriptomes of two unicellular cyanobacteria and suggest that in PCC 7806, the α- α- RNAs might participate in a regulatory connection between the genes of the locus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048231-0
2011-12-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3398.html?itemId=/content/journal/micro/10.1099/mic.0.048231-0&mimeType=html&fmt=ahah

References

  1. Axmann I. M., Kensche P., Vogel J., Kohl S., Herzel H., Hess W. R.. ( 2005;). Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biol6:R73 [CrossRef][PubMed]
    [Google Scholar]
  2. Bagg A., Neilands J. B.. ( 1987;). Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli . Biochemistry26:5471–5477 [CrossRef][PubMed]
    [Google Scholar]
  3. Dühring U., Axmann I. M., Hess W. R., Wilde A.. ( 2006;). An internal antisense RNA regulates expression of the photosynthesis gene isiA . Proc Natl Acad Sci U S A103:7054–7058 [CrossRef][PubMed]
    [Google Scholar]
  4. Fuangthong M., Herbig A. F., Bsat N., Helmann J. D.. ( 2002;). Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol184:3276–3286 [CrossRef][PubMed]
    [Google Scholar]
  5. Hernández J. A., López-Gomollón S., Bes M. T., Fillat M. F., Peleato M. L.. ( 2004;). Three fur homologues from Anabaena sp. PCC7120: exploring reciprocal protein-promoter recognition. FEMS Microbiol Lett236:275–282 [CrossRef][PubMed]
    [Google Scholar]
  6. Hernández J. A., Muro-Pastor A. M., Flores E., Bes M. T., Peleato M. L., Fillat M. F.. ( 2006;). Identification of a furA cis antisense RNA in the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol355:325–334 [CrossRef][PubMed]
    [Google Scholar]
  7. Hernández J. A., Alonso I., Pellicer S., Luisa Peleato M., Cases R., Strasser R. J., Barja F., Fillat M. F.. ( 2010;). Mutants of Anabaena sp. PCC 7120 lacking alr1690 and α-furA antisense RNA show a pleiotropic phenotype and altered photosynthetic machinery. J Plant Physiol167:430–437 [CrossRef][PubMed]
    [Google Scholar]
  8. Koide T., Reiss D. J., Bare J. C., Pang W. L., Facciotti M. T., Schmid A. K., Pan M., Marzolf B., Van P. T. et al. & other authors ( 2009;). Prevalence of transcription promoters within archaeal operons and coding sequences. Mol Syst Biol5:285 [CrossRef][PubMed]
    [Google Scholar]
  9. López-Gomollón S., Hernández J. A., Pellicer S., Angarica V. E., Peleato M. L., Fillat M. F.. ( 2007;). Cross-talk between iron and nitrogen regulatory networks in Anabaena (Nostoc) sp. PCC 7120: identification of overlapping genes in FurA and NtcA regulons. J Mol Biol374:267–281 [CrossRef][PubMed]
    [Google Scholar]
  10. Martín-Luna B., Hernández J. A., Bes M. T., Fillat M. F., Peleato M. L.. ( 2006;). Identification of a ferric uptake regulator from Microcystis aeruginosa PCC7806. FEMS Microbiol Lett254:63–70 [CrossRef][PubMed]
    [Google Scholar]
  11. Massé E., Gottesman S.. ( 2002;). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli . Proc Natl Acad Sci U S A99:4620–4625 [CrossRef][PubMed]
    [Google Scholar]
  12. Mitschke J., Georg J., Scholz I., Sharma C. M., Dienst D., Bantscheff J., Voß B., Steglich C., Wilde A. et al. & other authors ( 2011;). An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A108:2124–2129 [CrossRef][PubMed]
    [Google Scholar]
  13. Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M.. ( 2008;). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science320:1344–1349 [CrossRef][PubMed]
    [Google Scholar]
  14. Outten F. W., Wood M. J., Munoz F. M., Storz G.. ( 2003;). The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli . J Biol Chem278:45713–45719 [CrossRef][PubMed]
    [Google Scholar]
  15. Outten F. W., Djaman O., Storz G.. ( 2004;). A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli . Mol Microbiol52:861–872 [CrossRef][PubMed]
    [Google Scholar]
  16. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stainer R. Y.. ( 1979;). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol111:1–61[CrossRef]
    [Google Scholar]
  17. Seki A., Nakano T., Takahashi H., Matsumoto K., Ikeuchi M., Tanaka K.. ( 2006;). Light-responsive transcriptional regulation of the suf promoters involved in cyanobacterium Synechocystis sp. PCC 6803 Fe-S cluster biogenesis. FEBS Lett580:5044–5048 [CrossRef][PubMed]
    [Google Scholar]
  18. Sola-Landa A., Rodríguez-García A., Franco-Domínguez E., Martín J. F.. ( 2005;). Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol56:1373–1385 [CrossRef][PubMed]
    [Google Scholar]
  19. Večerek B., Moll I., Bläsi U.. ( 2007;). Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J26:965–975 [CrossRef][PubMed]
    [Google Scholar]
  20. Voß B., Georg J., Schön V., Ude S., Hess W. R.. ( 2009;). Biocomputational prediction of non-coding RNAs in model cyanobacteria. BMC Genomics10:123 [CrossRef][PubMed]
    [Google Scholar]
  21. Waldbeser L. S., Chen Q., Crosa J. H.. ( 1995;). Antisense RNA regulation of the fatB iron transport protein gene in Vibrio anguillarum . Mol Microbiol17:747–756 [CrossRef][PubMed]
    [Google Scholar]
  22. Waters L. S., Storz G.. ( 2009;). Regulatory RNAs in bacteria. Cell136:615–628 [CrossRef][PubMed]
    [Google Scholar]
  23. Zhang Z., Gosset G., Barabote R., Gonzalez C. S., Cuevas W. A., Saier M. H. Jr. ( 2005;). Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli . J Bacteriol187:980–990 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048231-0
Loading
/content/journal/micro/10.1099/mic.0.048231-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error