1887

Abstract

The pathogenic yeast degrades various hydroxy derivatives of benzenes and benzoates by the gentisate and 3-oxoadipate pathways. We identified the genes , , , , and that code for enzymes involved in these pathways in the complete genome sequence of . Next, we demonstrated that , , and are inducible and transcriptionally controlled by hydroxyaromatic substrates present in cultivation media. Our results indicate that and code for flavoprotein monooxygenases catalysing the first steps in the 3-oxoadipate and gentisate pathways, respectively (i.e. 4-hydroxybenzoate 1-hydroxylase and 3-hydroxybenzoate 6-hydroxylase). Moreover, we found that the two pathways differ by their intracellular localization. The enzymes of the 3-oxoadipate pathway, Mnx1p and Mnx3p, localize predominantly in the cytosol. In contrast, intracellular localization of the components of the gentisate pathway, Mnx2p and Gdx1p, depends on the substrate in the cultivation medium. In cells growing on glucose these proteins localize in the cytosol, whereas in media containing hydroxyaromatic compounds they associate with mitochondria. Finally, we showed that the overexpression of or increases the tolerance of cells to the antifungal drug terbinafine.

Funding
This study was supported by the:
  • Howard Hughes Medical Institute (Award 55005622)
  • VEGA (Award 1/0132/09 and 1/0219/08)
  • APVV (Award 0024-07)
  • Comenius University (Award UK/276/2009)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048215-0
2011-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2152.html?itemId=/content/journal/micro/10.1099/mic.0.048215-0&mimeType=html&fmt=ahah

References

  1. Balzan R., Sapienza K., Galea D. R., Vassallo N., Frey H., Bannister W. H. ( 2004). Aspirin commits yeast cells to apoptosis depending on carbon source. Microbiology 150:109–115 [View Article][PubMed]
    [Google Scholar]
  2. Butler G., Rasmussen M. D., Lin M. F., Santos M. A., Sakthikumar S., Munro C. A., Rheinbay E., Grabherr M., Forche A. et al. ( 2009). Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662 [View Article][PubMed]
    [Google Scholar]
  3. Carruba G., Pontieri E., De Bernardis F., Martino P., Cassone A. ( 1991). DNA fingerprinting and electrophoretic karyotype of environmental and clinical isolates of Candida parapsilosis . J Clin Microbiol 29:916–922[PubMed]
    [Google Scholar]
  4. Cooper B. H., Land G. A. ( 1979). Assimilation of protocatechuic acid and p-hydroxybenzoic acid as an aid to laboratory identification of Candida parapsilosis and other medically important yeasts. J Clin Microbiol 10:343–345[PubMed]
    [Google Scholar]
  5. Ding C., Butler G. ( 2007). Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. Eukaryot Cell 6:1310–1319 [View Article][PubMed]
    [Google Scholar]
  6. Eppink M. H., Boeren S. A., Vervoort J., van Berkel W. J. ( 1997). Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604. J Bacteriol 179:6680–6687[PubMed]
    [Google Scholar]
  7. Eppink M. H., Cammaart E., Van Wassenaar D., Middelhoven W. J., van Berkel W. J. ( 2000). Purification and properties of hydroquinone hydroxylase, a FAD-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604. Eur J Biochem 267:6832–6840 [View Article][PubMed]
    [Google Scholar]
  8. Fitzpatrick D. A., O'Gaora P., Byrne K. P., Butler G. ( 2010). Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser. BMC Genomics 11:290[PubMed] [CrossRef]
    [Google Scholar]
  9. Gimeno C. J., Fink G. R. ( 1994). Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14:2100–2112[PubMed]
    [Google Scholar]
  10. Graminha M. A., Rocha E. M., Prade R. A., Martinez-Rossi N. M. ( 2004). Terbinafine resistance mediated by salicylate 1-monooxygenase in Aspergillus nidulans . Antimicrob Agents Chemother 48:3530–3535 [View Article][PubMed]
    [Google Scholar]
  11. Grund E., Denecke B., Eichenlaub R. ( 1992). Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl Environ Microbiol 58:1874–1877[PubMed]
    [Google Scholar]
  12. Jeffries T. W., Grigoriev I. V., Grimwood J., Laplaza J. M., Aerts A., Salamov A., Schmutz J., Lindquist E., Dehal P. et al. ( 2007). Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis . Nat Biotechnol 25:319–326 [View Article][PubMed]
    [Google Scholar]
  13. Jones T., Federspiel N. A., Chibana H., Dungan J., Kalman S., Magee B. B., Newport G., Thorstenson Y. R., Agabian N. et al. ( 2004). The diploid genome sequence of Candida albicans . Proc Natl Acad Sci U S A 101:7329–7334 [View Article][PubMed]
    [Google Scholar]
  14. Kosa P., Gavenciakova B., Nosek J. ( 2007). Development of a set of plasmid vectors for genetic manipulations of the pathogenic yeast Candida parapsilosis . Gene 396:338–345 [View Article][PubMed]
    [Google Scholar]
  15. Leeuw N. J., Swart C. W., Ncango D. M., Pohl C. H., Sebolai O. M., Strauss C. J., Botes P. J., van Wyk P. W., Nigam S., Kock J. L. ( 2007). Acetylsalicylic acid as antifungal in Eremothecium and other yeasts. Antonie van Leeuwenhoek 91:393–405 [View Article][PubMed]
    [Google Scholar]
  16. Logue M. E., Wong S., Wolfe K. H., Butler G. ( 2005). A genome sequence survey shows that the pathogenic yeast Candida parapsilosis has a defective MTLa1 allele at its mating type locus. Eukaryot Cell 4:1009–1017 [View Article][PubMed]
    [Google Scholar]
  17. Middelhoven W. J. ( 1993). Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. A literature review and an experimental approach. Antonie van Leeuwenhoek 63:125–144 [View Article][PubMed]
    [Google Scholar]
  18. Middelhoven W. J., Coenen A., Kraakman B., Sollewijn Gelpke M. D. ( 1992). Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeasts Candida parapsilosis and Arxula adeninivorans: evidence for an operative gentisate pathway. Antonie van Leeuwenhoek 62:181–187 [View Article][PubMed]
    [Google Scholar]
  19. Nosek J., Adamikova L., Zemanova J., Tomaska L., Zufferey R., Mamoun C. B. ( 2002). Genetic manipulation of the pathogenic yeast Candida parapsilosis . Curr Genet 42:27–35 [View Article][PubMed]
    [Google Scholar]
  20. Nosek J., Holesova Z., Kosa P., Gacser A., Tomaska L. ( 2009). Biology and genetics of the pathogenic yeast Candida parapsilosis . Curr Genet 55:497–509 [View Article][PubMed]
    [Google Scholar]
  21. Rose M., Botstein D. ( 1983). Construction and use of gene fusions to lacZ (beta-galactosidase) that are expressed in yeast. Methods Enzymol 101:167–180 [View Article][PubMed]
    [Google Scholar]
  22. Ryder N. S., Wagner S., Leitner I. ( 1998). In vitro activities of terbinafine against cutaneous isolates of Candida albicans and other pathogenic yeasts. Antimicrob Agents Chemother 42:1057–1061[PubMed]
    [Google Scholar]
  23. Suh S. O., Nguyen N. H., Blackwell M. ( 2008). Yeasts isolated from plant-associated beetles and other insects: seven novel Candida species near Candida albicans . FEMS Yeast Res 8:88–102 [View Article][PubMed]
    [Google Scholar]
  24. Tavanti A., Davidson A. D., Gow N. A., Maiden M. C., Odds F. C. ( 2005). Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol 43:284–292 [View Article][PubMed]
    [Google Scholar]
  25. Trindade R. C., Resende M. A., Silva C. M., Rosa C. A. ( 2002). Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits. Syst Appl Microbiol 25:294–300 [View Article][PubMed]
    [Google Scholar]
  26. Trofa D., Gácser A., Nosanchuk J. D. ( 2008). Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21:606–625 [View Article][PubMed]
    [Google Scholar]
  27. van Asbeck E. C., Clemons K. V., Stevens D. A. ( 2009). Candida parapsilosis: a review of its epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility. Crit Rev Microbiol 35:283–309 [View Article][PubMed]
    [Google Scholar]
  28. van Berkel W. J., Eppink M. H., Middelhoven W. J., Vervoort J., Rietjens I. M. ( 1994). Catabolism of 4-hydroxybenzoate in Candida parapsilosis proceeds through initial oxidative decarboxylation by a FAD-dependent 4-hydroxybenzoate 1-hydroxylase. FEMS Microbiol Lett 121:207–215[PubMed]
    [Google Scholar]
  29. Weems J. J. Jr ( 1992). Candida parapsilosis: epidemiology, pathogenicity, clinical manifestations, and antimicrobial susceptibility. Clin Infect Dis 14:756–766 [View Article][PubMed]
    [Google Scholar]
  30. Zemanova J., Nosek J., Tomaska L. ( 2004). High-efficiency transformation of the pathogenic yeast Candida parapsilosis . Curr Genet 45:183–186 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048215-0
Loading
/content/journal/micro/10.1099/mic.0.048215-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error