1887

Abstract

A group of JmjC domain-containing proteins also harbour JmjN domains. Although the JmjC domain is known to possess histone demethylase activity, the function of the JmjN domain remains largely undetermined. Previously, we have demonstrated that the yeast Gis1 transcription factor, bearing both JmjN and JmjC domains at its N terminus, is subject to proteasome-mediated selective proteolysis to downregulate its transcription activation ability. Here, we reveal that the JmjN and JmjC domains interact with each other through two β-sheets, one in each domain. Removal of either or both β-strands or the entire JmjN domain leads to complete degradation of Gis1, mediated partially by the proteasome. Mutating the core residues essential for histone demethylase activity demonstrated for other JmjC-containing proteins or deleting both Jumonji domains enhances the transcription activity of Gis1, but has no impact on its selective proteolysis by the proteasome. Together, these data suggest that JmjN and JmjC interact physically to form a structural unit that ensures the stability and appropriate transcription activity of Gis1.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/C505140/2)
  • Cambridge Overseas Trust
  • Lucy Cavendish College
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048199-0
2011-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2694.html?itemId=/content/journal/micro/10.1099/mic.0.048199-0&mimeType=html&fmt=ahah

References

  1. Barski A., Cuddapah S., Cui K., Roh T. Y., Schones D. E., Wang Z., Wei G., Chepelev I., Zhao K. ( 2007). High-resolution profiling of histone methylations in the human genome. Cell 129:823–837 [View Article][PubMed]
    [Google Scholar]
  2. Bedford M. T. ( 2007). Arginine methylation at a glance. J Cell Sci 120:4243–4246 [View Article][PubMed]
    [Google Scholar]
  3. Cameroni E., Hulo N., Roosen J., Winderickx J., De Virgilio C. ( 2004). The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle 3:460–468 [View Article][PubMed]
    [Google Scholar]
  4. Chang Y., Wu J., Tong X. J., Zhou J. Q., Ding J. ( 2011). Crystal structure of the catalytic core of Saccharomyces cerevesiae histone demethylase Rph1: insights into the substrate specificity and catalytic mechanism. Biochem J 433:295–302 [View Article][PubMed]
    [Google Scholar]
  5. Chen Z., Zang J., Whetstine J., Hong X., Davrazou F., Kutateladze T. G., Simpson M., Mao Q., Pan C. H. et al. ( 2006). Structural insights into histone demethylation by JMJD2 family members. Cell 125:691–702 [View Article][PubMed]
    [Google Scholar]
  6. Heintzman N. D., Hon G. C., Hawkins R. D., Kheradpour P., Stark A., Harp L. F., Ye Z., Lee L. K., Stuart R. K. et al. ( 2009). Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112 [View Article][PubMed]
    [Google Scholar]
  7. Huang F., Chandrasekharan M. B., Chen Y. C., Bhaskara S., Hiebert S. W., Sun Z. W. ( 2010). The JmjN domain of Jhd2 is important for its protein stability, and the plant homeodomain (PHD) finger mediates its chromatin association independent of H3K4 methylation. J Biol Chem 285:24548–24561 [View Article][PubMed]
    [Google Scholar]
  8. Kim T., Buratowski S. ( 2007). Two Saccharomyces cerevisiae JmjC domain proteins demethylate histone H3 Lys36 in transcribed regions to promote elongation. J Biol Chem 282:20827–20835 [View Article][PubMed]
    [Google Scholar]
  9. Klose R. J., Zhang Y. ( 2007). Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307–318 [View Article][PubMed]
    [Google Scholar]
  10. Klose R. J., Kallin E. M., Zhang Y. ( 2006). JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727 [View Article][PubMed]
    [Google Scholar]
  11. Lachner M., O’Sullivan R. J., Jenuwein T. ( 2003). An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124 [View Article][PubMed]
    [Google Scholar]
  12. Linding R., Russell R. B., Neduva V., Gibson T. J. ( 2003). GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708 [View Article][PubMed]
    [Google Scholar]
  13. Margueron R., Trojer P., Reinberg D. ( 2005). The key to development: interpreting the histone code?. Curr Opin Genet Dev 15:163–176 [View Article][PubMed]
    [Google Scholar]
  14. Martin C., Zhang Y. ( 2005). The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849 [View Article][PubMed]
    [Google Scholar]
  15. Mersman D. P., Du H. N., Fingerman I. M., South P. F., Briggs S. D. ( 2009). Polyubiquitination of the demethylase Jhd2 controls histone methylation and gene expression. Genes Dev 23:951–962 [View Article][PubMed]
    [Google Scholar]
  16. Mosammaparast N., Shi Y. ( 2010). Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179 [View Article][PubMed]
    [Google Scholar]
  17. Pedruzzi I., Bürckert N., Egger P., De Virgilio C. ( 2000). Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 19:2569–2579 [View Article][PubMed]
    [Google Scholar]
  18. Pedruzzi I., Dubouloz F., Cameroni E., Wanke V., Roosen J., Winderickx J., De Virgilio C. ( 2003). TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell 12:1607–1613 [View Article][PubMed]
    [Google Scholar]
  19. Piwko W., Jentsch S. ( 2006). Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site. Nat Struct Mol Biol 13:691–697 [View Article][PubMed]
    [Google Scholar]
  20. Strahl B. D., Allis C. D. ( 2000). The language of covalent histone modifications. Nature 403:41–45 [View Article][PubMed]
    [Google Scholar]
  21. Tronnersjö S., Hanefalk C., Balciunas D., Hu G. Z., Nordberg N., Murén E., Ronne H. ( 2007). The jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact with 19 proteins involved in transcription, sumoylation and DNA repair. Mol Genet Genomics 277:57–70 [View Article][PubMed]
    [Google Scholar]
  22. Tsukada Y., Fang J., Erdjument-Bromage H., Warren M. E., Borchers C. H., Tempst P., Zhang Y. ( 2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816 [View Article][PubMed]
    [Google Scholar]
  23. Tu S., Bulloch E. M., Yang L., Ren C., Huang W. C., Hsu P. H., Chen C. H., Liao C. L., Yu H. M. et al. ( 2007). Identification of histone demethylases in Saccharomyces cerevisiae. J Biol Chem 282:14262–14271 [View Article][PubMed]
    [Google Scholar]
  24. van der Ven P. F., Wiesner S., Salmikangas P., Auerbach D., Himmel M., Kempa S., Hayess K., Pacholsky D., Taivainen A. et al. ( 2000). Indications for a novel muscular dystrophy pathway. γ-Filamin, the muscle-specific filamin isoform, interacts with myotilin. J Cell Biol 151:235–248 [View Article][PubMed]
    [Google Scholar]
  25. Wanke V., Cameroni E., Uotila A., Piccolis M., Urban J., Loewith R., De Virgilio C. ( 2008). Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol 69:277–285 [View Article][PubMed]
    [Google Scholar]
  26. Wei M., Fabrizio P., Hu J., Ge H., Cheng C., Li L., Longo V. D. ( 2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4:e13 [View Article][PubMed]
    [Google Scholar]
  27. Wu J., Zhang N., Hayes A., Panoutsopoulou K., Oliver S. G. ( 2004). Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Proc Natl Acad Sci U S A 101:3148–3153 [View Article][PubMed]
    [Google Scholar]
  28. Yu Y., Neiman A. M., Sternglanz R. ( 2010). The JmjC domain of Gis1 is dispensable for transcriptional activation. FEMS Yeast Res 10:793–801 [View Article][PubMed]
    [Google Scholar]
  29. Zhang N., Oliver S. G. ( 2010). The transcription activity of Gis1 is negatively modulated by proteasome-mediated limited proteolysis. J Biol Chem 285:6465–6476 [View Article][PubMed]
    [Google Scholar]
  30. Zhang N., Wu J., Oliver S. G. ( 2009). Gis1 is required for transcriptional reprogramming of carbon metabolism and the stress response during transition into stationary phase in yeast. Microbiology 155:1690–1698 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048199-0
Loading
/content/journal/micro/10.1099/mic.0.048199-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error