1887

Abstract

is known to take up extracellular peptides via at least three distinct peptide transporters. The well-described oligopeptide transporter Opp alone is able to ensure the growth of in milk, while the di- and tripeptide transporter DtpT is involved in a peptide-dependent signalling mechanism. The oligopeptide Opt transporter displays two peptide-binding proteins, OptA and OptS. We previously demonstrated that OptA-dependent transport is dedicated to nutritional peptides, as an mutant (of a strain devoid of Opp) has an impaired capacity to grow in milk. Using isogenic peptide transport mutants, this study shows that biosynthesis of the Opt transporter is much less sensitive to downregulation that is dependent on extracellular peptides taken up by DtpT than is Opp biosynthesis; this peptide-dependent regulation relies on the transcriptional repressor CodY. We demonstrate the dual function of the Opt system; while OptA contributes to the bacterial nutrition during growth in milk, OptS is involved in the transport of signalling peptides derived from milk and controlling expression. So, these results shed new light on the peptide-dependent regulation relying on two peptide transporters with different specificities: DtpT and Opt (via OptS).

Funding
This study was supported by the:
  • Centre National de la Recherche Scientifique
  • French Ministry of Education and Research
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048173-0
2011-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1612.html?itemId=/content/journal/micro/10.1099/mic.0.048173-0&mimeType=html&fmt=ahah

References

  1. Atlan D., Laloi P., Portalier R. ( 1989). Isolation and characterization of aminopeptidase-deficent Lactobacillus bulgaricus mutants. Appl Environ Microbiol 55:1717–1723[PubMed]
    [Google Scholar]
  2. Birnboim H. C., Doly J. ( 1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [View Article][PubMed]
    [Google Scholar]
  3. Biswas I., Gruss A., Ehrlich S. D., Maguin E. ( 1993). High-efficiency gene inactivation and replacement system for Gram-positive bacteria. J Bacteriol 175:3628–3635[PubMed]
    [Google Scholar]
  4. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. ( 2001). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753 [View Article][PubMed]
    [Google Scholar]
  5. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  6. Brøndsted L., Hammer K. ( 1999). Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis . Appl Environ Microbiol 65:2859–2865
    [Google Scholar]
  7. Charbonnel P., Lamarque M., Piard J. C., Gilbert C., Juillard V., Atlan D. ( 2003). Diversity of oligopeptide transport specificity in Lactococcus lactis species. A tool to unravel the role of OppA in uptake specificity. J Biol Chem 278:14832–14840 [View Article][PubMed]
    [Google Scholar]
  8. den Hengst C. D., van Hijum S. A., Geurts J. M., Nauta A., Kok J., Kuipers O. P. ( 2005). The Lactococcus lactis CodY regulon: identification of a conserved cis-regulatory element. J Biol Chem 280:34332–34342 [View Article][PubMed]
    [Google Scholar]
  9. Detmers F. J., Lanfermeijer F. C., Abele R., Jack R. W., Tampé R., Konings W. N., Poolman B. ( 2000). Combinatorial peptide libraries reveal the ligand-binding mechanism of the oligopeptide receptor OppA of Lactococcus lactis . Proc Natl Acad Sci U S A 97:12487–12492 [View Article][PubMed]
    [Google Scholar]
  10. de Vos W. M., Vos P., de Haard H., Boerrigter I. ( 1989). Cloning and expression of the Lactococcus lactis subsp. cremoris SK11 gene encoding an extracellular serine proteinase. Gene 85:169–176 [View Article][PubMed]
    [Google Scholar]
  11. Doeven M. K., Kok J., Poolman B. ( 2005). Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms. Mol Microbiol 57:640–649 [View Article][PubMed]
    [Google Scholar]
  12. Dower W. J., Miller J. F., Ragsdale C. W. ( 1988). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [View Article][PubMed]
    [Google Scholar]
  13. Fang G., Konings W. N., Poolman B. ( 2000). Kinetics and substrate specificity of membrane-reconstituted peptide transporter DtpT of Lactococcus lactis . J Bacteriol 182:2530–2535 [View Article][PubMed]
    [Google Scholar]
  14. Guédon E., Renault P., Ehrlich S. D., Delorme C. ( 2001). Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J Bacteriol 183:3614–3622 [View Article][PubMed]
    [Google Scholar]
  15. Guédon E., Sperandio B., Pons N., Ehrlich S. D., Renault P. ( 2005). Overall control of nitrogen metabolism in Lactococcus lactis by CodY, and possible models for CodY regulation in Firmicutes. Microbiology 151:3895–3909 [View Article][PubMed]
    [Google Scholar]
  16. Juillard V., Le Bars D., Kunji E. R., Konings W. N., Gripon J. C., Richard J. ( 1995). Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl Environ Microbiol 61:3024–3030[PubMed]
    [Google Scholar]
  17. Koide A., Perego M., Hoch J. A. ( 1999). ScoC regulates peptide transport and sporulation initiation in Bacillus subtilis . J Bacteriol 181:4114–4117[PubMed]
    [Google Scholar]
  18. Kunji E. R., Smid E. J., Plapp R., Poolman B., Konings W. N. ( 1993). Di-tripeptides and oligopeptides are taken up via distinct transport mechanisms in Lactococcus lactis . J Bacteriol 175:2052–2059[PubMed]
    [Google Scholar]
  19. Kunji E. R., Hagting A., De Vries C. J., Juillard V., Haandrikman A. J., Poolman B., Konings W. N. ( 1995). Transport of β-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis . J Biol Chem 270:1569–1574 [View Article][PubMed]
    [Google Scholar]
  20. Lamarque M., Charbonnel P., Aubel D., Piard J.-C., Atlan D., Juillard V. ( 2004). A multifunction ABC transporter (Opt) contributes to diversity of peptide uptake specificity within the genus Lactococcus . J Bacteriol 186:6492–6500 [View Article][PubMed]
    [Google Scholar]
  21. Lazazzera B. A. ( 2001). The intracellular function of extracellular signaling peptides. Peptides 22:1519–1527 [View Article][PubMed]
    [Google Scholar]
  22. Marugg J. D., Meijer W., van Kranenburg R., Laverman P., Bruinenberg P. G., de Vos W. M. ( 1995). Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: control of transcription initiation by specific dipeptides. J Bacteriol 177:2982–2989[PubMed]
    [Google Scholar]
  23. Miller J. ( 1992). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  24. Monnet V. ( 2003). Bacterial oligopeptide-binding proteins. Cell Mol Life Sci 60:2100–2114 [View Article][PubMed]
    [Google Scholar]
  25. Peltoniemi K., Vesanto E., Palva A. ( 2002). Genetic characterization of an oligopeptide transport system from Lactobacillus delbrueckii subsp. bulgaricus . Arch Microbiol 177:457–467 [View Article][PubMed]
    [Google Scholar]
  26. Poolman B., Konings W. N. ( 1988). Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol 170:700–707[PubMed]
    [Google Scholar]
  27. Sonenshein A. L. ( 2005). CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr Opin Microbiol 8:203–207 [View Article][PubMed]
    [Google Scholar]
  28. Terzaghi B. E., Sandine W. E. ( 1975). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813[PubMed]
    [Google Scholar]
  29. Tynkkynen S., Buist G., Kunji E., Kok J., Poolman B., Venema G., Haandrikman A. ( 1993). Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis . J Bacteriol 175:7523–7532[PubMed]
    [Google Scholar]
  30. Wells J. M., Wilson P. W., Le Page R. W. ( 1993). Improved cloning vectors and transformation procedure for Lactococcus lactis . J Appl Bacteriol 74:629–636[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048173-0
Loading
/content/journal/micro/10.1099/mic.0.048173-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error