1887

Abstract

The environmental bacterium is increasingly described as a multidrug-resistant pathogen of humans, being associated with pneumonia, among other diseases. But the degree to which is capable of replicating in a mammalian host has been an issue of controversy. Using a model of intranasal inoculation into adult A/J mice, we now document that strain K279a, the clinical isolate of whose complete genome sequence was recently determined, is in fact capable of replicating in lungs, displaying as much as a 10-fold increase in c.f.u. in the first 8 h of infection. Importantly, as few as 10 c.f.u. deposited into the A/J lung was sufficient to promote bacterial outgrowth. Bacterial replication in the lungs of the A/J mice was followed by elevations in pro-inflammatory cytokines and also promoted resistance to subsequent challenge. We also found that DBA/2 mice were permissive for K279a replication, although the level of growth and persistence in these animals was less than it was in the A/J mice. In contrast, the BALB/c and C57BL/6 mouse strains were non-permissive for K279a growth. Interestingly, when five additional clinical isolates were introduced into the A/J lung, marked differences in survival were observed, with some strains being much less infective than K279a and others being appreciably more infective. These data suggest that the presence of major virulence determinants is variable among clinical isolates. Overall, this study confirms the infectivity of for the mammalian host, and illustrates how both host and bacterial factors affect the outcome of infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048157-0
2011-07-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2133.html?itemId=/content/journal/micro/10.1099/mic.0.048157-0&mimeType=html&fmt=ahah

References

  1. Ahn S. H., Deshmukh H., Johnson N., Cowell L. G., Rude T. H., Scott W. K., Nelson C. L., Zaas A. K., Marchuk D. A. et al.( 2010;). Two genes on A/J chromosome 18 are associated with susceptibility to Staphylococcus aureus infection by combined microarray and QTL analyses. PLoS Pathog6:e1001088 [CrossRef][PubMed]
    [Google Scholar]
  2. Alonso A., Martínez J. L..( 2000;). Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother44:3079–3086 [CrossRef][PubMed]
    [Google Scholar]
  3. Ansari S. R., Hanna H., Hachem R., Jiang Y., Rolston K., Raad I..( 2007;). Risk factors for infections with multidrug-resistant Stenotrophomonas maltophilia in patients with cancer. Cancer109:2615–2622 [CrossRef][PubMed]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K..( 1989;). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  5. Avison M. B., von Heldreich C. J., Higgins C. S., Bennett P. M., Walsh T. R..( 2000;). A TEM-2 β-lactamase encoded on an active Tn1-like transposon in the genome of a clinical isolate of Stenotrophomonas maltophilia. J Antimicrob Chemother46:879–884 [CrossRef][PubMed]
    [Google Scholar]
  6. Avison M. B., Higgins C. S., Ford P. J., von Heldreich C. J., Walsh T. R., Bennett P. M..( 2002;). Differential regulation of L1 and L2 β-lactamase expression in Stenotrophomonas maltophilia. J Antimicrob Chemother49:387–389 [CrossRef][PubMed]
    [Google Scholar]
  7. Brieland J., Freeman P., Kunkel R., Chrisp C., Hurley M., Fantone J., Engleberg C..( 1994;). Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice. A murine model of human Legionnaires' disease. Am J Pathol145:1537–1546[PubMed]
    [Google Scholar]
  8. Crossman L. C., Gould V. C., Dow J. M., Vernikos G. S., Okazaki A., Sebaihia M., Saunders D., Arrowsmith C., Carver T. et al.( 2008;). The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol9:R74 [CrossRef][PubMed]
    [Google Scholar]
  9. Davies J. C., Rubin B. K..( 2007;). Emerging and unusual Gram-negative infections in cystic fibrosis. Semin Respir Crit Care Med28:312–321 [CrossRef][PubMed]
    [Google Scholar]
  10. DebRoy S., Dao J., Söderberg M., Rossier O., Cianciotto N. P..( 2006;). Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A103:19146–19151 [CrossRef][PubMed]
    [Google Scholar]
  11. Denton M., Kerr K. G..( 1998;). Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin Microbiol Rev11:57–80[PubMed]
    [Google Scholar]
  12. Di Bonaventura G., Prosseda G., Del Chierico F., Cannavacciuolo S., Cipriani P., Petrucca A., Superti F., Ammendolia M. G., Concato C. et al.( 2007;). Molecular characterization of virulence determinants of Stenotrophomonas maltophilia strains isolated from patients affected by cystic fibrosis. Int J Immunopathol Pharmacol20:529–537[PubMed]
    [Google Scholar]
  13. Di Bonaventura G., Pompilio A., Zappacosta R., Petrucci F., Fiscarelli E., Rossi C., Piccolomini R..( 2010;). Role of excessive inflammatory response to Stenotrophomonas maltophilia lung infection in DBA/2 mice and implications for cystic fibrosis. Infect Immun78:2466–2476 [CrossRef][PubMed]
    [Google Scholar]
  14. Falagas M. E., Kastoris A. C., Vouloumanou E. K., Dimopoulos G..( 2009;). Community-acquired Stenotrophomonas maltophilia infections: a systematic review. Eur J Clin Microbiol Infect Dis28:719–730 [CrossRef][PubMed]
    [Google Scholar]
  15. Figueirêdo P. M., Furumura M. T., Santos A. M., Sousa A. C., Kota D. J., Levy C. E., Yano T..( 2006;). Cytotoxic activity of clinical Stenotrophomonas maltophilia. Lett Appl Microbiol43:443–449 [CrossRef][PubMed]
    [Google Scholar]
  16. Fouhy Y., Scanlon K., Schouest K., Spillane C., Crossman L., Avison M. B., Ryan R. P., Dow J. M..( 2007;). Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol189:4964–4968 [CrossRef][PubMed]
    [Google Scholar]
  17. George S. E., Kohan M. J., Gilmour M. I., Taylor M. S., Brooks H. G., Creason J. P., Claxton L. D..( 1993;). Pulmonary clearance and inflammatory response in C3H/HeJ mice after intranasal exposure to Pseudomonas spp. Appl Environ Microbiol59:3585–3591[PubMed]
    [Google Scholar]
  18. Glomski I. J., Dumetz F., Jouvion G., Huerre M. R., Mock M., Goossens P. L..( 2008;). Inhaled non-capsulated Bacillus anthracis in A/J mice: nasopharynx and alveolar space as dual portals of entry, delayed dissemination, and specific organ targeting. Microbes Infect10:1398–1404 [CrossRef][PubMed]
    [Google Scholar]
  19. Gordon N. C., Wareham D. W..( 2010;). Novel variants of the Smqnr family of quinolone resistance genes in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother65:483–489 [CrossRef][PubMed]
    [Google Scholar]
  20. Gould V. C., Avison M. B..( 2006;). SmeDEF-mediated antimicrobial drug resistance in Stenotrophomonas maltophilia clinical isolates having defined phylogenetic relationships. J Antimicrob Chemother57:1070–1076 [CrossRef][PubMed]
    [Google Scholar]
  21. Hernández A., Maté M. J., Sánchez-Díaz P. C., Romero A., Rojo F., Martínez J. L..( 2009;). Structural and functional analysis of SmeT, the repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. J Biol Chem284:14428–14438 [CrossRef][PubMed]
    [Google Scholar]
  22. Huang T. P., Wong A. C..( 2007;). A cyclic AMP receptor protein-regulated cell-cell communication system mediates expression of a FecA homologue in Stenotrophomonas maltophilia. Appl Environ Microbiol73:5034–5040 [CrossRef][PubMed]
    [Google Scholar]
  23. Huang Y. W., Lin C. W., Hu R. M., Lin Y. T., Chung T. C., Yang T. C..( 2010;). AmpN-AmpG operon is essential for expression of L1 and L2 β-lactamases in Stenotrophomonas maltophilia. Antimicrob Agents Chemother54:2583–2589 [CrossRef][PubMed]
    [Google Scholar]
  24. Kim H. B., Srinivasan S., Sathiyaraj G., Quan L. H., Kim S. H., Bui T. P., Liang Z. Q., Kim Y. J., Yang D. C..( 2010;). Stenotrophomonas ginsengisoli sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol60:1522–1526 [CrossRef][PubMed]
    [Google Scholar]
  25. Lambiase A., Raia V., Del Pezzo M., Sepe A., Carnovale V., Rossano F..( 2006;). Microbiology of airway disease in a cohort of patients with cystic fibrosis. BMC Infect Dis6:4–10 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee M., Woo S. G., Chae M., Shin M. C., Jung H. M., Ten L. N..( 2011;). Stenotrophomonas daejeonensis sp. nov., isolated from sewage. Int J Syst Evol Microbiol61:598–604 [CrossRef][PubMed]
    [Google Scholar]
  27. Looney W. J., Narita M., Mühlemann K..( 2009;). Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis9:312–323 [CrossRef][PubMed]
    [Google Scholar]
  28. McKay G. A., Woods D. E., MacDonald K. L., Poole K..( 2003;). Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect Immun71:3068–3075 [CrossRef][PubMed]
    [Google Scholar]
  29. Minkwitz A., Berg G..( 2001;). Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol39:139–145 [CrossRef][PubMed]
    [Google Scholar]
  30. Nicoletti M., Iacobino A., Prosseda G., Fiscarelli E., Zarrilli R., De Carolis E., Petrucca A., Nencioni L., Colonna B., Casalino M..( 2011;). Stenotrophomonas maltophilia strains from cystic fibrosis patients: genomic variability and molecular characterization of some virulence determinants. Int J Med Microbiol301:34–43 [CrossRef][PubMed]
    [Google Scholar]
  31. Okazaki A., Avison M. B..( 2007;). Aph(3′)-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob Agents Chemother51:359–360 [CrossRef][PubMed]
    [Google Scholar]
  32. Paez J. I., Tengan F. M., Barone A. A., Levin A. S., Costa S. F..( 2008;). Factors associated with mortality in patients with bloodstream infection and pneumonia due to Stenotrophomonas maltophilia. Eur J Clin Microbiol Infect Dis27:901–906 [CrossRef][PubMed]
    [Google Scholar]
  33. Paschoal I. A., de Oliveira Villalba W., Bertuzzo C. S., Cerqueira E. M., Pereira M. C..( 2007;). Cystic fibrosis in adults. Lung185:81–87 [CrossRef][PubMed]
    [Google Scholar]
  34. Qiu H., KuoLee R., Harris G., Chen W..( 2009;). High susceptibility to respiratory Acinetobacter baumannii infection in A/J mice is associated with a delay in early pulmonary recruitment of neutrophils. Microbes Infect11:946–955 [CrossRef][PubMed]
    [Google Scholar]
  35. Ricklin D., Hajishengallis G., Yang K., Lambris J. D..( 2010;). Complement: a key system for immune surveillance and homeostasis. Nat Immunol11:785–797 [CrossRef][PubMed]
    [Google Scholar]
  36. Rocco F., De Gregorio E., Colonna B., Di Nocera P. P..( 2009;). Stenotrophomonas maltophilia genomes: a start-up comparison. Int J Med Microbiol299:535–546 [CrossRef][PubMed]
    [Google Scholar]
  37. Rossier O., Starkenburg S. R., Cianciotto N. P..( 2004;). Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect Immun72:310–321 [CrossRef][PubMed]
    [Google Scholar]
  38. Ryan R. P., Monchy S., Cardinale M., Taghavi S., Crossman L., Avison M. B., Berg G., van der Lelie D., Dow J. M..( 2009;). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol7:514–525 [CrossRef][PubMed]
    [Google Scholar]
  39. Safdar A., Rolston K. V..( 2007;). Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. Clin Infect Dis45:1602–1609 [CrossRef][PubMed]
    [Google Scholar]
  40. Sánchez M. B., Martínez J. L..( 2010;). SmQnr contributes to intrinsic resistance to quinolones in Stenotrophomonas maltophilia. Antimicrob Agents Chemother54:580–581 [CrossRef][PubMed]
    [Google Scholar]
  41. Sánchez M. B., Hernández A., Rodríguez-Martínez J. M., Martínez-Martínez L., Martínez J. L..( 2008;). Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BMC Microbiol8:148 [CrossRef][PubMed]
    [Google Scholar]
  42. Sánchez M. B., Hernandez A., Martinez J. L..( 2009;). Stenotrophomonas maltophilia drug resistance. Future Microbiol4:655–660 [CrossRef][PubMed]
    [Google Scholar]
  43. Schaumann R., Laurin F., Rodloff A. C..( 2008;). Molecular typing of clinical isolates of Stenotrophomonas maltophilia by pulsed-field gel electrophoresis and random primer PCR fingerprinting. Int J Hyg Environ Health211:292–298 [CrossRef][PubMed]
    [Google Scholar]
  44. Shimizu K., Kikuchi K., Sasaki T., Takahashi N., Ohtsuka M., Ono Y., Hiramatsu K..( 2008;). Smqnr, a new chromosome-carried quinolone resistance gene in Stenotrophomonas maltophilia. Antimicrob Agents Chemother52:3823–3825 [CrossRef][PubMed]
    [Google Scholar]
  45. Spicuzza L., Sciuto C., Vitaliti G., Di Dio G., Leonardi S., La Rosa M..( 2009;). Emerging pathogens in cystic fibrosis: ten years of follow-up in a cohort of patients. Eur J Clin Microbiol Infect Dis28:191–195 [CrossRef][PubMed]
    [Google Scholar]
  46. Travassos L. H., Pinheiro M. N., Coelho F. S., Sampaio J. L., Merquior V. L., Marques E. A..( 2004;). Phenotypic properties, drug susceptibility and genetic relatedness of Stenotrophomonas maltophilia clinical strains from seven hospitals in Rio de Janeiro, Brazil. J Appl Microbiol96:1143–1150 [CrossRef][PubMed]
    [Google Scholar]
  47. Valdezate S., Vindel A., Martín-Dávila P., Del Saz B. S., Baquero F., Cantón R..( 2004;). High genetic diversity among Stenotrophomonas maltophilia strains despite their originating at a single hospital. J Clin Microbiol42:693–699 [CrossRef][PubMed]
    [Google Scholar]
  48. Waters V. J., Gómez M. I., Soong G., Amin S., Ernst R. K., Prince A..( 2007;). Immunostimulatory properties of the emerging pathogen Stenotrophomonas maltophilia. Infect Immun75:1698–1703 [CrossRef][PubMed]
    [Google Scholar]
  49. Waters V., Yau Y., Prasad S., Lu A., Atenafu E., Crandall I., Tom S., Tullis E., Ratjen F..( 2011;). Stenotrophomonas maltophilia in cystic fibrosis: Serologic response and effect on lung disease. Am J Respir Crit Care Med183:635–640 [CrossRef][PubMed]
    [Google Scholar]
  50. Wilson K. R., Napper J. M., Denvir J., Sollars V. E., Yu H. D..( 2007;). Defect in early lung defence against Pseudomonas aeruginosa in DBA/2 mice is associated with acute inflammatory lung injury and reduced bactericidal activity in naive macrophages. Microbiology153:968–979 [CrossRef][PubMed]
    [Google Scholar]
  51. Yi H., Srinivasan S., Kim M. K..( 2010;). Stenotrophomonas panacihumi sp. nov., isolated from soil of a ginseng field. J Microbiol48:30–35 [CrossRef][PubMed]
    [Google Scholar]
  52. Zamboni D. S., Kobayashi K. S., Kohlsdorf T., Ogura Y., Long E. M., Vance R. E., Kuida K., Mariathasan S., Dixit V. M. et al.( 2006;). The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol7:318–325 [CrossRef][PubMed]
    [Google Scholar]
  53. Zgair A. K., Chhibber S..( 2010;a). Immunological and pathological aspects of respiratory tract infection with Stenotrophomonas maltophilia in BALB/c mice. J Microbiol Biotechnol20:1585–1591 [CrossRef][PubMed]
    [Google Scholar]
  54. Zgair A. K., Chhibber S..( 2010;b). Stenotrophomonas maltophilia flagellin induces a compartmentalized innate immune response in mouse lung. J Med Microbiol59:913–919 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.048157-0
Loading
/content/journal/micro/10.1099/mic.0.048157-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error