1887

Abstract

In our previous study, extensive genomic rearrangements were found in two strains of the Gram-negative anaerobic bacterium () , and most of these rearrangements were associated with mobile genetic elements such as insertion sequences and conjugative transposons (CTns). CTnPg1, identified in strain ATCC 33277, was the first complete CTn reported for the genus In the present study, we found that CTnPg1 can be transferred from strain ATCC 33277 to another strain, W83, at a frequency of 10 to 10. The excision of CTnPg1 from the chromosome in a donor cell depends on an integrase (Int; PGN_0094) encoded in CTnPg1, whereas CTnPg1 excision is independent of PGN_0084 (a DNA topoisomerase I homologue; Exc) encoded within CTnPg1 and (PGN_1057) on the donor chromosome. Intriguingly, however, the transfer of CTnPg1 between strains requires RecA function in the recipient. Sequencing analysis of CTnPg1-integrated sites on the chromosomes of transconjugants revealed that the consensus attachment () sequence is a 13 bp sequence, TTTTCNNNNAAAA. We further report that CTnPg1 is able to transfer to two other bacterial species, and In addition, CTnPg1-like CTns are located in the genomes of other oral anaerobic bacteria, , and , with the same consensus sequence. These results suggest that CTns in the CTnPg1 family are widely distributed among oral anaerobic Gram-negative bacteria found in humans and play important roles in horizontal gene transfer among these bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047803-0
2011-07-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2022.html?itemId=/content/journal/micro/10.1099/mic.0.047803-0&mimeType=html&fmt=ahah

References

  1. Abaibou H., Chen Z., Olango G. J., Liu Y., Edwards J., Fletcher H. M.. ( 2001;). vimA gene downstream of recA is involved in virulence modulation in Porphyromonas gingivalis W83. Infect Immun69:325–335 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Bacic M., Parker A. C., Stagg J., Whitley H. P., Wells W. G., Jacob L. A., Smith C. J.. ( 2005;). Genetic and structural analysis of the Bacteroides conjugative transposon CTn341. J Bacteriol187:2858–2869 [CrossRef][PubMed]
    [Google Scholar]
  4. Beck J., Garcia R., Heiss G., Vokonas P. S., Offenbacher S.. ( 1996;). Periodontal disease and cardiovascular disease. J Periodontol67:Suppl1123–1137[PubMed][CrossRef]
    [Google Scholar]
  5. Bedzyk L. A., Shoemaker N. B., Young K. E., Salyers A. A.. ( 1992;). Insertion and excision of Bacteroides conjugative chromosomal elements. J Bacteriol174:166–172[PubMed]
    [Google Scholar]
  6. Bellen H. J., Levis R. W., Liao G., He Y., Carlson J. W., Tsang G., Evans-Holm M., Hiesinger P. R., Schulze K. L. et al. ( 2004;). The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics167:761–781 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen T., Yu W.-H., Izard J., Baranova O. V., Lakshmanan A., Dewhirst F. E.. ( 2010;). The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford)2010:baq013[PubMed][CrossRef]
    [Google Scholar]
  8. Cheng Q., Paszkiet B. J., Shoemaker N. B., Gardner J. F., Salyers A. A.. ( 2000;). Integration and excision of a Bacteroides conjugative transposon, CTnDOT. J Bacteriol182:4035–4043 [CrossRef][PubMed]
    [Google Scholar]
  9. Chiu B.. ( 1999;). Multiple infections in carotid atherosclerotic plaques. Am Heart J138:S534–S536 [CrossRef][PubMed]
    [Google Scholar]
  10. Clewell D. B., Flannagan S. E.. ( 1993;). The conjugative transposons of Gram-positive bacteria. Bacterial Conjugation369–393 Clewell D. B.. New York: Plenum Press;
    [Google Scholar]
  11. Cooper A. J., Kalinowski A. P., Shoemaker N. B., Salyers A. A.. ( 1997;). Construction and characterization of a Bacteroides thetaiotaomicron recA mutant: transfer of Bacteroides integrated conjugative elements is RecA independent. J Bacteriol179:6221–6227[PubMed]
    [Google Scholar]
  12. Jeters R. T., Wang G. R., Moon K., Shoemaker N. B., Salyers A. A.. ( 2009;). Tetracycline-associated transcriptional regulation of transfer genes of the Bacteroides conjugative transposon CTnDOT. J Bacteriol191:6374–6382 [CrossRef][PubMed]
    [Google Scholar]
  13. Joshipura K. J., Rimm E. B., Douglass C. W., Trichopoulos D., Ascherio A., Willett W. C.. ( 1996;). Poor oral health and coronary heart disease. J Dent Res75:1631–1636 [CrossRef][PubMed]
    [Google Scholar]
  14. Kikuchi Y., Ohara N., Sato K., Yoshimura M., Yukitake H., Sakai E., Shoji M., Naito M., Nakayama K.. ( 2005;). Novel stationary-phase-upregulated protein of Porphyromonas gingivalis influences production of superoxide dismutase, thiol peroxidase and thioredoxin. Microbiology151:841–853 [CrossRef][PubMed]
    [Google Scholar]
  15. Kondo Y., Ohara N., Sato K., Yoshimura M., Yukitake H., Naito M., Fujiwara T., Nakayama K.. ( 2010;). Tetratricopeptide repeat protein-associated proteins contribute to the virulence of Porphyromonas gingivalis . Infect Immun78:2846–2856 [CrossRef][PubMed]
    [Google Scholar]
  16. Kozarov E. V., Dorn B. R., Shelburne C. E., Dunn W. A. Jr, Progulske-Fox A.. ( 2005;). Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis . Arterioscler Thromb Vasc Biol25:e17–e18 [CrossRef][PubMed]
    [Google Scholar]
  17. Mattila K. J., Valtonen V. V., Nieminen M., Huttunen J. K.. ( 1995;). Dental infection and the risk of new coronary events: prospective study of patients with documented coronary artery disease. Clin Infect Dis20:588–592 [CrossRef][PubMed]
    [Google Scholar]
  18. Morrison H. I., Ellison L. F., Taylor G. W.. ( 1999;). Periodontal disease and risk of fatal coronary heart and cerebrovascular diseases. J Cardiovasc Risk6:7–11[PubMed]
    [Google Scholar]
  19. Naito M., Hirakawa H., Yamashita A., Ohara N., Shoji M., Yukitake H., Nakayama K., Toh H., Yoshimura F. et al. ( 2008;). Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. . DNA Res15:215–225 [CrossRef][PubMed]
    [Google Scholar]
  20. Nakayama K., Kadowaki T., Okamoto K., Yamamoto K.. ( 1995;). Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis. Evidence for significant contribution of Arg-gingipain to virulence. J Biol Chem270:23619–23626[PubMed][CrossRef]
    [Google Scholar]
  21. Nelson K. E., Fleischmann R. D., DeBoy R. T., Paulsen I. T., Fouts D. E., Eisen J. A., Daugherty S. C., Dodson R. J., Durkin A. S. et al. ( 2003;). Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol185:5591–5601 [CrossRef][PubMed]
    [Google Scholar]
  22. Salyers A. A., Shoemaker N. B., Stevens A. M., Li L. Y.. ( 1995;). Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev59:579–590[PubMed]
    [Google Scholar]
  23. Shoemaker N. B., Getty C., Guthrie E. P., Salyers A. A.. ( 1986;). Regions in Bacteroides plasmids pBFTM10 and pB8-51 that allow Escherichia coliBacteroides shuttle vectors to be mobilized by IncP plasmids and by a conjugative Bacteroides tetracycline resistance element. J Bacteriol166:959–965[PubMed]
    [Google Scholar]
  24. Shoemaker N. B., Wang G. R., Stevens A. M., Salyers A. A.. ( 1993;). Excision, transfer, and integration of NBU1, a mobilizable site-selective insertion element. J Bacteriol175:6578–6587[PubMed]
    [Google Scholar]
  25. Song B., Shoemaker N. B., Gardner J. F., Salyers A. A.. ( 2007;). Integration site selection by the Bacteroides conjugative transposon CTnBST. J Bacteriol189:6594–6601 [CrossRef][PubMed]
    [Google Scholar]
  26. Sugawara H., Ohyama A., Mori H., Kurokawa K.. ( 2009;). Microbial Genome Annotation Pipeline (MiGAP) for diverse users. The 20th International Conference on Genome Informatics (GIW2009) S001-001–S001-002 Yokohama, Japan: Japanese Society for Bioinformatics;
    [Google Scholar]
  27. Sutanto Y., Shoemaker N. B., Gardner J. F., Salyers A. A.. ( 2002;). Characterization of Exc, a novel protein required for the excision of Bacteroides conjugative transposon. Mol Microbiol46:1239–1246 [CrossRef][PubMed]
    [Google Scholar]
  28. Sutanto Y., DiChiara J. M., Shoemaker N. B., Gardner J. F., Salyers A. A.. ( 2004;). Factors required in vitro for excision of the Bacteroides conjugative transposon, CTnDOT. Plasmid52:119–130 [CrossRef][PubMed]
    [Google Scholar]
  29. Taniguchi A., Nishimura F., Murayama Y., Nagasaka S., Fukushima M., Sakai M., Yoshii S., Kuroe A., Suzuki H. et al. ( 2003;). Porphyromonas gingivalis infection is associated with carotid atherosclerosis in non-obese Japanese type 2 diabetic patients. Metabolism52:142–145 [CrossRef][PubMed]
    [Google Scholar]
  30. Taylor G. W.. ( 2001;). Bidirectional interrelationships between diabetes and periodontal diseases: an epidemiologic perspective. Ann Periodontol6:99–112 [CrossRef][PubMed]
    [Google Scholar]
  31. Tribble G. D., Lamont G. J., Progulske-Fox A., Lamont R. J.. ( 2007;). Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis . J Bacteriol189:6382–6388 [CrossRef][PubMed]
    [Google Scholar]
  32. Ueshima J., Shoji M., Ratnayake D. B., Abe K., Yoshida S., Yamamoto K., Nakayama K.. ( 2003;). Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis . Infect Immun71:1170–1178 [CrossRef][PubMed]
    [Google Scholar]
  33. Valentine P. J., Shoemaker N. B., Salyers A. A.. ( 1988;). Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J Bacteriol170:1319–1324[PubMed]
    [Google Scholar]
  34. Waldor M. K., Tschäpe H., Mekalanos J. J.. ( 1996;). A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol178:4157–4165[PubMed]
    [Google Scholar]
  35. Whittle G., Shoemaker N. B., Salyers A. A.. ( 2002;a). The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol Life Sci59:2044–2054 [CrossRef][PubMed]
    [Google Scholar]
  36. Whittle G., Shoemaker N. B., Salyers A. A.. ( 2002;b). Characterization of genes involved in modulation of conjugal transfer of the Bacteroides conjugative transposon CTnDOT. J Bacteriol184:3839–3847 [CrossRef][PubMed]
    [Google Scholar]
  37. Whittle G., Hamburger N., Shoemaker N. B., Salyers A. A.. ( 2006;). A Bacteroides conjugative transposon, CTnERL, can transfer a portion of itself by conjugation without excising from the chromosome. J Bacteriol188:1169–1174 [CrossRef][PubMed]
    [Google Scholar]
  38. Wood M. M., Dichiara J. M., Yoneji S., Gardner J. F.. ( 2010;). CTnDOT integrase interactions with attachment site DNA and control of directionality of the recombination reaction. J Bacteriol192:3934–3943 [CrossRef][PubMed]
    [Google Scholar]
  39. Wozniak R. A., Waldor M. K.. ( 2010;). Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol8:552–563 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047803-0
Loading
/content/journal/micro/10.1099/mic.0.047803-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error