1887

Abstract

The presence of glycogen-accumulating organisms (GAO) has been hypothesized to be a cause of deterioration in enhanced biological phosphorus removal (EBPR) processes due to their abilities to out-compete polyphosphate-accumulating organisms (PAO). Based on 16S rRNA gene sequences, new members of uncultured gammaproteobacterial GAO (GB) were identified from sludge samples of a lab-scale sequencing batch reactor used for EBPR. The new GB formed a phylogenetic lineage (GB8) clearly distinct from the previously reported seven GB subgroups. Because the new GB8 members were not targeted by the known fluorescence hybridization (FISH) oligonucleotide probes, a GB8-specific FISH probe (GB429) and a new FISH probe (GB742) targeting all eight GB subgroups were designed, and the phenotypic properties of the new GB8 members were investigated. FISH and microautoradiography approaches showed that GB429-targeted cells (GB8) were large coccobacilli (2–4 µm in size) with the ability to take up acetate under anaerobic conditions, but unable to accumulate polyphosphate under the subsequent aerobic conditions, consistent with phenotypes of GB. FISH analyses on several sludge samples showed that members of GB8 were commonly detected as the majority of GB in lab- and full-scale EBPR processes. In conclusion, this study showed that members of GB8 could be a subgroup of GB with an important role in EBPR deterioration. Designs of FISH probes which hybridize with broader GB subgroups at different hierarchical levels will contribute to studies of the distributions and ecophysiologies of GB in lab- or full-scale EBPR plants.

Funding
This study was supported by the:
  • 21C Frontier Microbial Genomics and Application Center Program (Award MG05-0104-4-0)
  • Next-Generation BioGreen 21 Program, Rural Development Administration, Republic of Korea (Award SSAC2011- PJ008220)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047779-0
2011-08-01
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2287.html?itemId=/content/journal/micro/10.1099/mic.0.047779-0&mimeType=html&fmt=ahah

References

  1. Amann R. I., Ludwig W., Schleifer K. H. ( 1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169[PubMed]
    [Google Scholar]
  2. Bond P. L., Hugenholtz P., Keller J., Blackall L. L. ( 1995). Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916[PubMed]
    [Google Scholar]
  3. Burow L. C., Kong Y. H., Nielsen J. L., Blackall L. L., Nielsen P. H. ( 2007). Abundance and ecophysiology of Defluviicoccus spp., glycogen-accumulating organisms in full-scale wastewater treatment processes. Microbiology 153:178–185 [View Article][PubMed]
    [Google Scholar]
  4. Cech J. S., Hartman P. ( 1993). Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Res 27:1219–1225 [View Article]
    [Google Scholar]
  5. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. et al. ( 2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:Database issueD141–D145 [View Article][PubMed]
    [Google Scholar]
  6. Crocetti G. R., Hugenholtz P., Bond P. L., Schuler A., Keller J., Jenkins D., Blackall L. L. ( 2000). Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66:1175–1182 [View Article][PubMed]
    [Google Scholar]
  7. Crocetti G. R., Banfield J. F., Keller J., Bond P. L., Blackall L. L. ( 2002). Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148:3353–3364[PubMed]
    [Google Scholar]
  8. Daims H., Brühl A., Amann R., Schleifer K. H., Wagner M. ( 1999). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444[PubMed] [CrossRef]
    [Google Scholar]
  9. DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L. ( 2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. ( 2002). phylip (phylogeny inference package), version 3.6a. Department of Genome Sciences, University of Washington; Seattle, USA:
  11. Fuchs B. M., Glöckner F. O., Wulf J., Amann R. ( 2000). Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66:3603–3607 [View Article][PubMed]
    [Google Scholar]
  12. Hugenholtz P., Tyson G. W., Blackall L. L. ( 2002). Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. Methods Mol Biol 179:29–42[PubMed]
    [Google Scholar]
  13. Jeon C. O., Park J. M. ( 2000). Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source. Water Res 34:2160–2170 [View Article]
    [Google Scholar]
  14. Jeon C. O., Lee D. S., Lee M. W., Park J. M. ( 2001). Enhanced biological phosphorus removal in an anaerobic–aerobic sequencing batch reactor: effect of pH. Water Environ Res 73:301–306 [View Article][PubMed]
    [Google Scholar]
  15. Jeon C. O., Lee D. S., Park J. M. ( 2003a). Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Res 37:2195–2205 [View Article][PubMed]
    [Google Scholar]
  16. Jeon C. O., Park W., Padmanabhan P., DeRito C., Snape J. R., Madsen E. L. ( 2003b). Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci U S A 100:13591–13596 [View Article][PubMed]
    [Google Scholar]
  17. Jiang Y., Chen Y., Zheng X. ( 2009). Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process. Environ Sci Technol 43:7734–7741 [View Article][PubMed]
    [Google Scholar]
  18. Kim J. M., Le N. T., Chung B. S., Park J. H., Bae J. W., Madsen E. L., Jeon C. O. ( 2008). Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 74:7313–7320 [View Article][PubMed]
    [Google Scholar]
  19. Kim J. M., Lee H. J., Kim S. Y., Song J. J., Park W. J., Jeon C. O. ( 2010). Analysis of the fine-scale population structure of “Candidatus Accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometric sorting. Appl Environ Microbiol 76:3825–3835 [View Article][PubMed]
    [Google Scholar]
  20. Kong Y. H., Ong S. L., Ng W. J., Liu W. T. ( 2002). Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic–aerobic activated sludge processes. Environ Microbiol 4:753–757 [View Article][PubMed]
    [Google Scholar]
  21. Kong Y. H., Nielsen J. L., Nielsen P. H. ( 2004). Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 70:5383–5390 [View Article][PubMed]
    [Google Scholar]
  22. Kong Y. H., Xia Y., Nielsen J. L., Nielsen P. H. ( 2006). Ecophysiology of a group of uncultured gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants. Environ Microbiol 8:479–489 [View Article][PubMed]
    [Google Scholar]
  23. Lane D. J. ( 1991). 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics115–175 Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  24. Lee N., Nielsen P. H., Andreasen K. H., Juretschko S., Nielsen J. L., Schleifer K. H., Wagner M. ( 1999). Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297[PubMed]
    [Google Scholar]
  25. Liu W. T., Mino T., Nakamura K., Matsuo T. ( 1994). Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic–aerobic activated-sludge with a minimized polyphosphate content. J Ferment Bioeng 77:535–540 [View Article]
    [Google Scholar]
  26. Liu W. T., Mino T., Nakamura K., Matsuo T. ( 1996). Glycogen accumulating population and its anaerobic substrate uptake in anaerobic–aerobic activated sludge without biological phosphorus removal. Water Res 30:75–82 [View Article]
    [Google Scholar]
  27. Lu S., Park M. J., Ro H. S., Lee D. S., Park W. J., Jeon C. O. ( 2006). Analysis of microbial communities using culture-dependent and culture-independent approaches in an anaerobic/aerobic SBR reactor. J Microbiol 44:155–161[PubMed]
    [Google Scholar]
  28. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004). ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  29. McIlroy S. J., Nittami T., Seviour E. M., Seviour R. J. ( 2010). Filamentous members of cluster III Defluviicoccus have the in situ phenotype expected of a glycogen-accumulating organism in activated sludge. FEMS Microbiol Ecol 74:248–256 [View Article][PubMed]
    [Google Scholar]
  30. Meyer R. L., Saunders A. M., Blackall L. L. ( 2006). Putative glycogen-accumulating organisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing. Microbiology 152:419–429 [View Article][PubMed]
    [Google Scholar]
  31. Mino T., Arun V., Tsuzuki Y., Matsuo T. ( 1987). Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. Biological Phosphate Removal from Wastewaters27–38 Ramadori R. Oxford: Pergamon Press; [CrossRef]
    [Google Scholar]
  32. Mino T., Liu W. T., Kurisu F., Matsuo T. ( 1995). Modeling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci Technol 31:25–34 [View Article]
    [Google Scholar]
  33. Mino T., Van Loosdrecht M. C. M., Heijnen J. J. ( 1998). Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32:3193–3207 [View Article]
    [Google Scholar]
  34. Nielsen A. T., Liu W. T., Filipe C., Grady L. Jr, Molin S., Stahl D. A. ( 1999). Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258[PubMed]
    [Google Scholar]
  35. Nielsen J. L., Christensen D., Kloppenborg M., Nielsen P. H. ( 2003). Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ Microbiol 5:202–211 [View Article][PubMed]
    [Google Scholar]
  36. Oehmen A., Lemos P. C., Carvalho G., Yuan Z., Keller J., Blackall L. L., Reis M. A. M. ( 2007). Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41:2271–2300 [View Article][PubMed]
    [Google Scholar]
  37. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W. G., Peplies J., Glöckner F. O. ( 2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  38. Satoh H., Mino T., Matsuo T. ( 1994). Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation. Water Sci Technol 30:203–211
    [Google Scholar]
  39. Schramm A., Fuchs B. M., Nielsen J. L., Tonolla M., Stahl D. A. ( 2002). Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol 4:713–720 [View Article][PubMed]
    [Google Scholar]
  40. Schroeder S., Petrovski S., Campbell B., McIlroy S., Seviour R. ( 2009). Phylogeny and in situ identification of a novel gammaproteobacterium in activated sludge. FEMS Microbiol Lett 297:157–163 [View Article][PubMed]
    [Google Scholar]
  41. Seviour R. J., McIlroy S. ( 2008). The microbiology of phosphorus removal in activated sludge processes – the current state of play. J Microbiol 46:115–124 [View Article][PubMed]
    [Google Scholar]
  42. Seviour R. J., Mino T., Onuki M. ( 2003). The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27:99–127 [View Article][PubMed]
    [Google Scholar]
  43. Stamatakis A., Ott M., Ludwig T. ( 2005). RAxML-OMP: an efficient program for phylogenetic inference on SMPs. Lect Notes Comput Sci 3506:288–302 [View Article]
    [Google Scholar]
  44. Wang Q., Shao Y., Huong V. T. T., Park W. J., Park J. M., Jeon C. O. ( 2008). Fine-scale population structure of Accumulibacter phosphatis in enhanced biological phosphorus removal sludge. J Microbiol Biotechnol 18:1290–1297[PubMed]
    [Google Scholar]
  45. Wong M.-T., Tan F. M., Ng W. J., Liu W.-T. ( 2004). Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic–aerobic activated sludge processes. Microbiology 150:3741–3748 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.047779-0
Loading
/content/journal/micro/10.1099/mic.0.047779-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error