1887

Abstract

IncP plasmids are important contributors to bacterial adaptation. Their phenotypic diversity is due largely to accessory regions located in one or two specific parts of the plasmid. The accessory regions are themselves diverse, as judged from sequenced plasmids mostly isolated from non-clinical sources. To further understand the diversity, evolutionary history and functional attributes of the accessory regions, we compared R906 and R772, focusing on the accessory region. These IncPβ plasmids were from porcine and clinical sources, respectively. We found that the accessory regions formed potentially mobile elements, Tn (from R906) and Tn (from R772), that differed internally but had identical borders. Both elements appeared to have evolved from a Tn-like transposon that had inserted into an ancestral IncPβ plasmid and then accrued additional transposable elements and genes from various proteobacteria. Structural comparisons suggested that Tn (and a descendent in pB10), Tn and the element in pJP4 represent three lineages that evolved from the same widely dispersed IncPβ carrier. Functional studies on Tn revealed that its module is inactive due to a mutation, and that its region is prone to deletion. More significantly, we showed that by providing a suitable transposase gene , the defective Tn and Tn could transpose intact or in part, and could also generate new elements (stable cointegrates and novel transposons). The ingredients for assisted transposition events similar to those observed here occur in natural microcosms, providing non-self-mobile elements with avenues for dispersal to new replicons and for structural diversification. This work provides an experimental demonstration of how the complex embedded elements uncovered in IncP plasmids and in other plasmid families may have been generated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047761-0
2011-06-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1714.html?itemId=/content/journal/micro/10.1099/mic.0.047761-0&mimeType=html&fmt=ahah

References

  1. Adamczyk M., Jagura-Burdzy G.. ( 2003;). Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim Pol50:425–453[PubMed]
    [Google Scholar]
  2. Baek C.-H., Farrand S. K., Park D.-K., Lee K. E., Hwang W., Kim K.-S.. ( 2005;). Genes for utilization of deoxyfructosyl glutamine (DFG), an amadori compound, are widely dispersed in the family Rhizobiaceae . FEMS Microbiol Ecol53:221–233 [CrossRef][PubMed]
    [Google Scholar]
  3. Bahl M. I., Burmølle M., Meisner A., Hansen L. H., Sørensen S. J.. ( 2009;). All IncP-1 plasmid subgroups, including the novel ϵ subgroup, are prevalent in the influent of a Danish wastewater treatment plant. Plasmid62:134–139 [CrossRef][PubMed]
    [Google Scholar]
  4. Barkay T., Miller S. M., Summers A. O.. ( 2003;). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev27:355–384 [CrossRef][PubMed]
    [Google Scholar]
  5. Bennett P. M., Grinsted J., Richmond M. H.. ( 1977;). Transposition of TnA does not generate deletions. Mol Gen Genet154:205–211 [CrossRef][PubMed]
    [Google Scholar]
  6. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S.. ( 1977;). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene2:95–113 [CrossRef][PubMed]
    [Google Scholar]
  7. Boyd D. A., Tyler S., Christianson S., McGeer A., Muller M. P., Willey B. M., Bryce E., Gardam M., Nordmann P., Mulvey M. R.. Canadian Nosocomial Infection Surveillance Program, Health Canada ( 2004;). Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob Agents Chemother48:3758–3764 [CrossRef][PubMed]
    [Google Scholar]
  8. Brockman F. J., Bezdicek D. F.. ( 1989;). Diversity within serogroups of Rhizobium leguminosarum biovar viceae in the Palouse region of Eastern Washington as indicated by plasmid profiles, intrinsic antibiotic resistance, and topography. Appl Environ Microbiol55:109–115[PubMed]
    [Google Scholar]
  9. Chiou C.-S., Jones A. L.. ( 1993;). Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other Gram-negative bacteria. J Bacteriol175:732–740[PubMed]
    [Google Scholar]
  10. Coetzee J. N.. ( 1978;). Mobilization of the Proteus mirabilis chromosome by R plasmid R772. J Gen Microbiol108:103–109[PubMed][CrossRef]
    [Google Scholar]
  11. Cole M. A., Elkan G. H.. ( 1979;). Multiple antibiotic resistance in Rhizobium japonicum . Appl Environ Microbiol37:867–870[PubMed]
    [Google Scholar]
  12. Davies J.. ( 1994;). Inactivation of antibiotics and the dissemination of resistance genes. Science264:375–382 [CrossRef][PubMed]
    [Google Scholar]
  13. De Gelder L. F., Vandecasteele F. P., Brown C. J., Forney L. J., Top E. M.. ( 2005;). Plasmid donor affects host range of promiscuous IncP-1β plasmid pB10 in an activated-sludge microbial community. Appl Environ Microbiol71:5309–5317 [CrossRef][PubMed]
    [Google Scholar]
  14. De Gelder L., Ponciano J. M., Joyce P., Top E. M.. ( 2007;). Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. Microbiology153:452–463 [CrossRef][PubMed]
    [Google Scholar]
  15. de la Cruz F., Grinsted J.. ( 1982;). Genetic and molecular characterization of Tn21, a multiple resistance transposon from R100.1. J Bacteriol151:222–228[PubMed]
    [Google Scholar]
  16. Di Gioia D., Peel M., Fava F., Wyndham R. C.. ( 1998;). Structures of homologous composite transposons carrying cbaABC genes from Europe and North America. Appl Environ Microbiol64:1940–1946[PubMed]
    [Google Scholar]
  17. Grinsted J., de la Cruz F., Schmitt R.. ( 1990;). The Tn21 subgroup of bacterial transposable elements. Plasmid24:163–189 [CrossRef][PubMed]
    [Google Scholar]
  18. Hamlett N. V., Landale E. C., Davis B. H., Summers A. O.. ( 1992;). Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. J Bacteriol174:6377–6385[PubMed]
    [Google Scholar]
  19. Hanahan D.. ( 1983;). Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580 [CrossRef][PubMed]
    [Google Scholar]
  20. Hedges R. W., Datta N., Coetzee J. N., Dennison S.. ( 1973;). R factors from Proteus morganii . J Gen Microbiol77:249–259[PubMed][CrossRef]
    [Google Scholar]
  21. Hedges R. W., Jacob A. E., Smith J. T.. ( 1974;). Properties of an R factor from Bordetella bronchiseptica . J Gen Microbiol84:199–204[PubMed][CrossRef]
    [Google Scholar]
  22. Hille J., van Kan J., Klasen I., Schilperoort R.. ( 1983;). Site-directed mutagenesis in Escherichia coli of a stable R772 : Ti cointegrate plasmid from Agrobacterium tumefaciens . J Bacteriol154:693–701[PubMed]
    [Google Scholar]
  23. Hobman J. L., Brown N. L.. ( 1996;). Overexpression of MerT, the mercuric ion transport protein of transposon Tn501, and genetic selection of mercury hypersensitivity mutations. Mol Gen Genet250:129–134 [CrossRef][PubMed]
    [Google Scholar]
  24. Kamachi K., Sota M., Tamai Y., Nagata N., Konda T., Inoue T., Top E. M., Arakawa Y.. ( 2006;). Plasmid pBP136 from Bordetella pertussis represents an ancestral form of IncP-1β plasmids without accessory mobile elements. Microbiology152:3477–3484 [CrossRef][PubMed]
    [Google Scholar]
  25. Kamali-Moghaddam M., Sundström L.. ( 2000;). Transposon targeting determined by resolvase. FEMS Microbiol Lett186:55–59 [CrossRef][PubMed]
    [Google Scholar]
  26. Kim C., Cha J. Y., Yan H., Vakulenko S. B., Mobashery S.. ( 2006;). Hydrolysis of ATP by aminoglycoside 3′-phosphotransferases: an unexpected cost to bacteria for harboring an antibiotic resistance enzyme. J Biol Chem281:6964–6969 [CrossRef][PubMed]
    [Google Scholar]
  27. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  28. Krishnapillai V.. ( 1988;). Molecular genetic analysis of bacterial plasmid promiscuity. FEMS Microbiol Rev4:223–237[PubMed][CrossRef]
    [Google Scholar]
  29. Kung V. L., Ozer E. A., Hauser A. R.. ( 2010;). The accessory genome of Pseudomonas aeruginosa . Microbiol Mol Biol Rev74:621–641 [CrossRef][PubMed]
    [Google Scholar]
  30. L’Abée-Lund T. M., Sørum H.. ( 2000;). Functional Tn5393-like transposon in the R plasmid pRAS2 from the fish pathogen Aeromonas salmonicida subspecies salmonicida isolated in Norway. Appl Environ Microbiol66:5533–5535 [CrossRef][PubMed]
    [Google Scholar]
  31. Liebert C. A., Wireman J., Smith T., Summers A. O.. ( 1997;). Phylogeny of mercury resistance (mer) operons of Gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol63:1066–1076[PubMed]
    [Google Scholar]
  32. Liebert C. A., Hall R. M., Summers A. O.. ( 1999;). Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev63:507–522[PubMed]
    [Google Scholar]
  33. Lund P. A., Brown N. L.. ( 1987;). Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions. Gene52:207–214 [CrossRef][PubMed]
    [Google Scholar]
  34. Ma Y.-F., Wu J.-F., Wang S.-Y., Jiang C.-Y., Zhang Y., Qi S.-W., Liu L., Zhao G.-P., Liu S.-J.. ( 2007;). Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl Environ Microbiol73:4477–4483 [CrossRef][PubMed]
    [Google Scholar]
  35. Mantengoli E., Rossolini G. M.. ( 2005;). Tn5393d, a complex Tn5393 derivative carrying the PER-1 extended-spectrum β-lactamase gene and other resistance determinants. Antimicrob Agents Chemother49:3289–3296 [CrossRef][PubMed]
    [Google Scholar]
  36. Minakhina S., Kholodii G., Mindlin S., Yurieva O., Nikiforov V.. ( 1999;). Tn5053 family transposons are res site hunters sensing plasmidal res sites occupied by cognate resolvases. Mol Microbiol33:1059–1068 [CrossRef][PubMed]
    [Google Scholar]
  37. Mindlin S. Z., Petrova M. A., Bass I. A., Gorlenko Zh. M.. ( 2006;). Origin, evolution, and migration of drug resistance genes. Russ J Genet42:1257–1272 [CrossRef]
    [Google Scholar]
  38. Ng S. P., Davis B., Palombo E. A., Bhave M.. ( 2009;). A Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res Notes2:38 [CrossRef][PubMed]
    [Google Scholar]
  39. Palombo E. A., Yusoff K., Stanisich V. A., Krishnapillai V., Willetts N. S.. ( 1989;). Cloning and genetic analysis of tra cistrons of the Tra 2/Tra 3 region of plasmid RP1. Plasmid22:59–69 [CrossRef][PubMed]
    [Google Scholar]
  40. Pansegrau W., Lanka E., Barth P. T., Figurski D. H., Guiney D. G., Haas D., Helinski D. R., Schwab H., Stanisich V. A., Thomas C. M.. ( 1994;). Complete nucleotide sequence of Birmingham IncPα plasmids. Compilation and comparative analysis. J Mol Biol239:623–663 [CrossRef][PubMed]
    [Google Scholar]
  41. Partridge S. R., Hall R. M.. ( 2003;). The IS1111 family members IS4321 and IS5075 have subterminal inverted repeats and target the terminal inverted repeats of Tn21 family transposons. J Bacteriol185:6371–6384 [CrossRef][PubMed]
    [Google Scholar]
  42. Petrovski S., Stanisich V. A.. ( 2010;). Tn502 and Tn512 are res site hunters that provide evidence of resolvase-independent transposition to random sites. J Bacteriol192:1865–1874 [CrossRef][PubMed]
    [Google Scholar]
  43. Rinkel M., Hubert J.-C., Roux B., Lett M.-C.. ( 1994;a). Identification of a new transposon Tn5403 in a Klebsiella pneumoniae strain isolated from a polluted aquatic environment. Curr Microbiol29:249–254 [CrossRef][PubMed]
    [Google Scholar]
  44. Rinkel M., Hubert J.-C., Roux B., Lett M.-C.. ( 1994;b). Transposon Tn5403, a mobilizable-helper element: complete nucleotide sequence and distribution in aquatic strains. FEMS Microbiol Ecol15:89–95 [CrossRef]
    [Google Scholar]
  45. Ruppé E., Woerther P.-L., Diop A., Sene A.-M., Da Costa A., Arlet G., Andremont A., Rouveix B.. ( 2009;). Carriage of CTX-M-15-producing Escherichia coli isolates among children living in a remote village in Senegal. Antimicrob Agents Chemother53:3135–3137 [CrossRef][PubMed]
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Sanchez J., Bennett P. M., Richmond M. H.. ( 1982;). Expression of elt-B, the gene encoding the B subunit of the heat-labile enterotoxin of Escherichia coli, when cloned in pACYC184. FEMS Microbiol Lett14:1–5 [CrossRef]
    [Google Scholar]
  48. Schlüter A., Heuer H., Szczepanowski R., Forney L. J., Thomas C. M., Pühler A., Top E. M.. ( 2003;). The 64 508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology149:3139–3153 [CrossRef][PubMed]
    [Google Scholar]
  49. Schlüter A., Szczepanowski R., Pühler A., Top E. M.. ( 2007;). Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev31:449–477 [CrossRef][PubMed]
    [Google Scholar]
  50. Sen D., Yano H., Suzuki H., Król J. E., Rogers L., Brown C. J., Top E. M.. ( 2010;). Comparative genomics of pAKD4, the prototype IncP-1δ plasmid with a complete backbone. Plasmid63:98–107 [CrossRef][PubMed]
    [Google Scholar]
  51. Smalla K., Krögerrecklenfort E., Heuer H., Dejonghe W., Top E., Osborn M., Niewint J., Tebbe C., Barr M. et al. ( 2000;). PCR-based detection of mobile genetic elements in total community DNA. Microbiology146:1256–1257[PubMed]
    [Google Scholar]
  52. Smith C. A., Thomas C. M.. ( 1987;). Comparison of the organisation of the genomes of phenotypically diverse plasmids of incompatibility group P: members of the IncP β sub-group are closely related. Mol Gen Genet206:419–427 [CrossRef][PubMed]
    [Google Scholar]
  53. Smith C. A., Thomas C. M.. ( 1989;). Relationships and evolution of IncP plasmids. Promiscuous Plasmids of Gram-Negative Bacteria57–77 Thomas C. M.. London: Academic Press;
    [Google Scholar]
  54. Smith C. A., Pinkney M., Guiney D. G., Thomas C. M.. ( 1993;). The ancestral IncP replication system consisted of contiguous oriV and trfA segments as deduced from a comparison of the nucleotide sequences of diverse IncP plasmids. J Gen Microbiol139:1761–1766[PubMed][CrossRef]
    [Google Scholar]
  55. Sota M., Yano H., Nagata Y., Ohtsubo Y., Genka H., Anbutsu H., Kawasaki H., Tsuda M.. ( 2006;). Functional analysis of unique class II insertion sequence IS1071 . Appl Environ Microbiol72:291–297 [CrossRef][PubMed]
    [Google Scholar]
  56. Sota M., Tsuda M., Yano H., Suzuki H., Forney L. J., Top E. M.. ( 2007;). Region-specific insertion of transposons in combination with selection for high plasmid transferability and stability accounts for the structural similarity of IncP-1 plasmids. J Bacteriol189:3091–3098 [CrossRef][PubMed]
    [Google Scholar]
  57. Sundin G. W., Monks D. E., Bender C. L.. ( 1995;). Distribution of the streptomycin-resistance transposon Tn5393 among phylloplane and soil bacteria from managed agricultural habitats. Can J Microbiol41:792–799 [CrossRef][PubMed]
    [Google Scholar]
  58. Terakado N., Mitsuhashi S.. ( 1974;). Properties of R factors from Bordetella bronchiseptica. . Antimicrob Agents Chemother6:836–840[PubMed][CrossRef]
    [Google Scholar]
  59. Thomas C. M.. ( 2000;). The Horizontal Gene Pool – Bacterial Plasmids and Gene Spread Amsterdam: Harwood Academic Publishers; [CrossRef]
    [Google Scholar]
  60. Thomas C. M., Smith C. A.. ( 1987;). Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol41:77–101 [CrossRef][PubMed]
    [Google Scholar]
  61. Thorsted P. B., Macartney D. P., Akhtar P., Haines A. S., Ali N., Davidson P., Stafford T., Pocklington M. J., Pansegrau W. et al. ( 1998;). Complete sequence of the IncPβ plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol282:969–990 [CrossRef][PubMed]
    [Google Scholar]
  62. Trefault N., De la Iglesia R., Molina A. M., Manzano M., Ledger T., Pérez-Pantoja D., Sánchez M. A., Stuardo M., González B.. ( 2004;). Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol6:655–668 [CrossRef][PubMed]
    [Google Scholar]
  63. Vakulenko S. B., Mobashery S.. ( 2003;). Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev16:430–450 [CrossRef][PubMed]
    [Google Scholar]
  64. Villarroel R., Hedges R. W., Maenhaut R., Leemans J., Engler G., Van Montagu M., Schell J.. ( 1983;). Heteroduplex analysis of P-plasmid evolution: the role of insertion and deletion of transposable elements. Mol Gen Genet189:390–399 [CrossRef][PubMed]
    [Google Scholar]
  65. Wang G., Xu X., Chen J. M., Berg D. E., Berg C. M.. ( 1994;). Inversions and deletions generated by a mini-γδ (Tn1000) transposon. J Bacteriol176:1332–1338[PubMed]
    [Google Scholar]
  66. Wyndham R. C., Cashore A. E., Nakatsu C. H., Peel M. C.. ( 1994;). Catabolic transposons. Biodegradation5:323–342 [CrossRef][PubMed]
    [Google Scholar]
  67. Yano H., Garruto C. E., Sota M., Ohtsubo Y., Nagata Y., Zylstra G. J., Williams P. A., Tsuda M.. ( 2007;). Complete sequence determination combined with analysis of transposition/site-specific recombination events to explain genetic organization of IncP-7 TOL plasmid pWW53 and related mobile genetic elements. J Mol Biol369:11–26 [CrossRef][PubMed]
    [Google Scholar]
  68. Yurieva O., Kholodii G., Minakhin L., Gorlenko Z., Kalyaeva E., Mindlin S., Nikiforov V.. ( 1997;). Intercontinental spread of promiscuous mercury-resistance transposons in environmental bacteria. Mol Microbiol24:321–329 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047761-0
Loading
/content/journal/micro/10.1099/mic.0.047761-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error