1887

Abstract

is an important cause of urinary tract infection (UTI), particularly among young women, and is second only to uropathogenic as the most frequent cause of UTI. The molecular mechanisms of urinary tract colonization by remain poorly understood. We have identified a novel 6.84 kb plasmid-located adhesin-encoding gene in strain MS1146 which we have termed uro-adherence factor B (). UafB is a glycosylated serine-rich repeat protein that is expressed on the surface of MS1146. UafB also functions as a major cell surface hydrophobicity factor. To characterize the role of UafB we generated an isogenic mutant in MS1146 by interruption with a group II intron. The mutant had a significantly reduced ability to bind to fibronectin and fibrinogen. Furthermore, we show that a recombinant protein containing the putative binding domain of UafB binds specifically to fibronectin and fibrinogen. UafB was not involved in adhesion in a mouse model of UTI; however, we observed a striking UafB-mediated adhesion phenotype to human uroepithelial cells. We have also identified genes homologous to in other staphylococci which, like , appear to be located on transposable elements. Thus, our data indicate that UafB is a novel adhesin of that contributes to cell surface hydrophobicity, mediates adhesion to fibronectin and fibrinogen, and exhibits tropism for human uroepithelial cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047639-0
2011-04-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1161.html?itemId=/content/journal/micro/10.1099/mic.0.047639-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J. H., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Arp L. H. 1988; Bacterial infection of mucosal surfaces: an overview of cellular and molecular mechanisms. In Virulence Mechanisms of Bacterial Pathogens pp 6–8 Edited by Roth J. A. Washington, DC: Americal Society for Microbiology;
    [Google Scholar]
  3. Atmaca S., Elci S., Akpolat N. O. 2000; Differential production of slime by Staphylococcus saprophyticus under aerobic and anaerobic conditions. J Med Microbiol 49:1051–1052
    [Google Scholar]
  4. Bensing B. A., Sullam P. M. 2009; Characterization of Streptococcus gordonii SecA2 as a paralogue of SecA. J Bacteriol 191:3482–3491
    [Google Scholar]
  5. Bensing B. A., Gibson B. W., Sullam P. M. 2004a; The Streptococcus gordonii platelet binding protein GspB undergoes glycosylation independently of export. J Bacteriol 186:638–645
    [Google Scholar]
  6. Bensing B. A., López J. A., Sullam P. M. 2004b; The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ib α . Infect Immun 72:6528–6537
    [Google Scholar]
  7. Bensing B. A., Siboo I. R., Sullam P. M. 2007; Glycine residues in the hydrophobic core of the GspB signal sequence route export toward the accessory Sec pathway. J Bacteriol 189:3846–3854
    [Google Scholar]
  8. Chen Q., Wu H., Kumar R., Peng Z. X., Fives-Taylor P. M. 2006; SecA2 is distinct from SecA in immunogenic specificity, subcellular distribution and requirement for membrane anchoring in Streptococcus parasanguis . FEMS Microbiol Lett 264:174–181
    [Google Scholar]
  9. Colleen S., Hovelius B., Wieslander A., Mårdh P. A. 1979; Surface properties of Staphylococcus saprophyticus and Staphylococcus epidermidis as studied by adherence tests and two-polymer, aqueous phase systems. Acta Pathol Microbiol Scand [B] 87:321–328
    [Google Scholar]
  10. Connell I., Agace W., Klemm P., Schembri M., , Mărild S., Svanborg C. 1996; Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93:9827–9832
    [Google Scholar]
  11. Endo G., Silver S. 1995; CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J Bacteriol 177:4437–4441
    [Google Scholar]
  12. Faro S., Fenner D. E. 1998; Urinary tract infections. Clin Obstet Gynecol 41:744–754
    [Google Scholar]
  13. Foxman B., Gillespie B., Koopman J., Zhang L., Palin K., Tallman P., Marsh J. V., Spear S., Sobel J. D. other authors 2000; Risk factors for second urinary tract infection among college women. Am J Epidemiol 151:1194–1205
    [Google Scholar]
  14. Gatermann S., Marre R. 1989; Cloning and expression of Staphylococcus saprophyticus urease gene sequences in Staphylococcus carnosus and contribution of the enzyme to virulence. Infect Immun 57:2998–3002
    [Google Scholar]
  15. Gatermann S., Meyer H. G. W. 1994; Staphylococcus saprophyticus hemagglutinin binds fibronectin. Infect Immun 62:4556–4563
    [Google Scholar]
  16. Gordon D., Abajian C., Green P. 1998; Consed: a graphical tool for sequence finishing. Genome Res 8:195–202
    [Google Scholar]
  17. Grant S. G. N., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649
    [Google Scholar]
  18. Hell W., Meyer H. G. W., Gatermann S. G. 1998; Cloning of aas , a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol 29:871–881
    [Google Scholar]
  19. Henderson B., Nair S., Pallas J., Williams M. A. 2011; Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35:147–200
    [Google Scholar]
  20. Hooton T. M., Stamm W. E. 1997; Diagnosis and treatment of uncomplicated urinary tract infection. Infect Dis Clin North Am 11:551–581
    [Google Scholar]
  21. Hovelius B., Mårdh P. A. 1984; Staphylococcus saprophyticus as a common cause of urinary tract infections. Rev Infect Dis 6:328–337
    [Google Scholar]
  22. Joh D., Wann E. R., Kreikemeyer B., Speziale P., Höök M. 1999; Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol 18:211–223
    [Google Scholar]
  23. Kleine B., Gatermann S., Sakinç T. 2010; Genotypic and phenotypic variation among Staphylococcus saprophyticus from human and animal isolates. BMC Res Notes 3:163
    [Google Scholar]
  24. Kuroda M., Yamashita A., Hirakawa H., Kumano M., Morikawa K., Higashide M., Maruyama A., Inose Y., Matoba K. other authors 2005; Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci U S A 102:13272–13277
    [Google Scholar]
  25. Mårdh P. A., Colleen S., Hovelius B. 1979; Attachment of bacteria to exfoliated cells from the urogenital tract. Invest Urol 16:322–326
    [Google Scholar]
  26. Martin M. A., Pfaller M. A., Massanari R. M., Wenzel R. P. 1989; Use of cellular hydrophobicity, slime production, and species identification markers for the clinical significance of coagulase-negative staphylococcal isolates. Am J Infect Control 17:130–135
    [Google Scholar]
  27. McCrea K. W., Hartford O., Davis S., Eidhin D. N., Lina G., Speziale P., Foster T. J., Höök M. 2000; The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis . Microbiology 146:1535–1546
    [Google Scholar]
  28. McNab R., Forbes H., Handley P. S., Loach D. M., Tannock G. W., Jenkinson H. F. 1999; Cell wall-anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J Bacteriol 181:3087–3095
    [Google Scholar]
  29. Navarre W. W., Schneewind O. 1999; Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229
    [Google Scholar]
  30. Nucifora G., Chu L., Misra T. K., Silver S. 1989; Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci U S A 86:3544–3548
    [Google Scholar]
  31. Paulsson M., Ljungh A., Wadström T. 1992; Rapid identification of fibronectin, vitronectin, laminin, and collagen cell surface binding proteins on coagulase-negative staphylococci by particle agglutination assays. J Clin Microbiol 30:2006–2012
    [Google Scholar]
  32. Peng Z., Wu H., Ruiz T., Chen Q., Zhou M., Sun B., Fives-Taylor P. 2008; Role of gap3 in Fap1 glycosylation, stability, in vitro adhesion, and fimbrial and biofilm formation of Streptococcus parasanguinis . Oral Microbiol Immunol 23:70–78
    [Google Scholar]
  33. Rupp M. E., Archer G. L. 1994; Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 19:231–243, quiz 244–245
    [Google Scholar]
  34. Rupp M. E., Soper D. E., Archer G. L. 1992; Colonization of the female genital tract with Staphylococcus saprophyticus . J Clin Microbiol 30:2975–2979
    [Google Scholar]
  35. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B. 2000; Artemis: sequence visualization and annotation. Bioinformatics 16:944–945
    [Google Scholar]
  36. Sakinç T., Woznowski M., Ebsen M., Gatermann S. G. 2005; The surface-associated protein of Staphylococcus saprophyticus is a lipase. Infect Immun 73:6419–6428
    [Google Scholar]
  37. Sakinç T., Kleine B., Gatermann S. G. 2006; SdrI, a serine-aspartate repeat protein identified in Staphylococcus saprophyticus strain 7108, is a collagen-binding protein. Infect Immun 74:4615–4623
    [Google Scholar]
  38. Sakinç T., Kleine B., Michalski N., Kaase M., Gatermann S. G. 2009; SdrI of Staphylococcus saprophyticus is a multifunctional protein: localization of the fibronectin-binding site. FEMS Microbiol Lett 301:28–34
    [Google Scholar]
  39. Sanchez C. J., Shivshankar P., Stol K., Trakhtenbroit S., Sullam P. M., Sauer K., Hermans P. W. M., Orihuela C. J. 2010; The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog 6:e1001044
    [Google Scholar]
  40. Schappert S. M. 1999; Ambulatory care visits to physician offices, hospital outpatient departments, and emergency departments: United States, 1997. Vital Health Stat 13:1–36
    [Google Scholar]
  41. Schneider P. F., Riley T. V. 1991; Cell-surface hydrophobicity of Staphylococcus saprophyticus . Epidemiol Infect 106:71–75
    [Google Scholar]
  42. Shivshankar P., Sanchez C., Rose L. F., Orihuela C. J. 2009; The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Mol Microbiol 73:663–679
    [Google Scholar]
  43. Siboo I. R., Chambers H. F., Sullam P. M. 2005; Role of SraP, a serine-rich surface protein of Staphylococcus aureus , in binding to human platelets. Infect Immun 73:2273–2280
    [Google Scholar]
  44. Stephenson A. E., Wu H., Novak J., Tomana M., Mintz K., Fives-Taylor P. 2002; The Fap1 fimbrial adhesin is a glycoprotein: antibodies specific for the glycan moiety block the adhesion of Streptococcus parasanguis in an in vitro tooth model. Mol Microbiol 43:147–157
    [Google Scholar]
  45. Takamatsu D., Bensing B. A., Sullam P. M. 2004a; Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding protein GspB. Mol Microbiol 52:189–203
    [Google Scholar]
  46. Takamatsu D., Bensing B. A., Sullam P. M. 2004b; Four proteins encoded in the gspB - secY2A2 operon of Streptococcus gordonii mediate the intracellular glycosylation of the platelet-binding protein GspB. J Bacteriol 186:7100–7111
    [Google Scholar]
  47. Takamatsu D., Bensing B. A., Cheng H., Jarvis G. A., Siboo I. R., López J. A., Griffiss J. M., Sullam P. M. 2005; Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ib α . Mol Microbiol 58:380–392
    [Google Scholar]
  48. Tylewska S. K., Hjerten S., Wadstrom T. 1979; Contribution of M protein to the hydrophobic surface properties of Streptococcus pyogenes . FEMS Microbiol Lett 6:249–253
    [Google Scholar]
  49. Ulett G. C., Mabbett A. N., Fung K. C., Webb R. I., Schembri M. A. 2007a; The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation. Microbiology 153:2321–2331
    [Google Scholar]
  50. Ulett G. C., Valle J., Beloin C., Sherlock O., Ghigo J. M., Schembri M. A. 2007b; Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75:3233–3244
    [Google Scholar]
  51. Upreti R. K., Kumar M., Shankar V. 2003; Bacterial glycoproteins: functions, biosynthesis and applications. Proteomics 3:363–379
    [Google Scholar]
  52. Valle J., Mabbett A. N., Ulett G. C., Toledo-Arana A., Wecker K., Totsika M., Schembri M. A., Ghigo J. M., Beloin C. 2008; UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli . J Bacteriol 190:4147–4161
    [Google Scholar]
  53. van Sorge N. M., Quach D., Gurney M. A., Sullam P. M., Nizet V., Doran K. S. 2009; The group B streptococcal serine-rich repeat 1 glycoprotein mediates penetration of the blood-brain barrier. J Infect Dis 199:1479–1487
    [Google Scholar]
  54. Wilson K. 2001; Preparation of Genomic DNA from Bacteria. In Current Protocols in Molecular Biology Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  55. Wu H., Mintz K. P., Ladha M., Fives-Taylor P. M. 1998; Isolation and characterization of Fap1, a fimbriae-associated adhesin of Streptococcus parasanguis FW213. Mol Microbiol 28:487–500
    [Google Scholar]
  56. Zhou M., Wu H. 2009; Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 155:317–327
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.047639-0
Loading
/content/journal/micro/10.1099/mic.0.047639-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error