1887

Abstract

has a highly condensed nucleoid which is implicated in its resistance to radiation. However, the mechanisms by which such compaction is achieved, and the proteins responsible, are still unknown. Here we have examined the genome of for the presence of proteins homologous to those that have been associated with nucleoid condensation. We found two different proteins homologous to the bacterial nucleoid-associated protein HU, one with an N-terminal and one with a C-terminal extension relative to the amino acid sequence of the HU found in . Sequence analysis revealed that one of these HU homologues represents a novel type with a high number of prolines in its C-terminal extension, whereas the other one has motifs similar to the N terminus of the HU homologue from the radio-resistant bacterium . The occurrence of two such HU homologue proteins with these two different terminal extensions in one organism appears to be unique among the Bacteria.

Funding
This study was supported by the:
  • , Australian Research Council
  • , Dow-Agroscience
  • , University of Washington
  • , The University of Queensland
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047605-0
2011-07-01
2020-11-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2012.html?itemId=/content/journal/micro/10.1099/mic.0.047605-0&mimeType=html&fmt=ahah

References

  1. Azam T. A., Ishihama A. ( 1999). Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 274:33105–33113 [CrossRef][PubMed]
    [Google Scholar]
  2. Bahloul A., Boubrik F., Rouviere-Yaniv J. ( 2001). Roles of Escherichia coli histone-like protein HU in DNA replication: HU-beta suppresses the thermosensitivity of dnaA46ts . Biochimie 83:219–229 [CrossRef][PubMed]
    [Google Scholar]
  3. Barry C. E. III, Hayes S. F., Hackstadt T. ( 1992). Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog. Science 256:377–379 [CrossRef][PubMed]
    [Google Scholar]
  4. Bharath M. M., Ramesh S., Chandra N. R., Rao M. R. ( 2002). Identification of a 34 amino acid stretch within the C-terminus of histone H1 as the DNA-condensing domain by site-directed mutagenesis. Biochemistry 41:7617–7627 [CrossRef][PubMed]
    [Google Scholar]
  5. Blasius M., Sommer S., Hübscher U. ( 2008). Deinococcus radiodurans: what belongs to the survival kit?. Crit Rev Biochem Mol Biol 43:221–238 [CrossRef][PubMed]
    [Google Scholar]
  6. Christodoulou E., Vorgias C. E. ( 2002). The thermostability of DNA-binding protein HU from mesophilic, thermophilic, and extreme thermophilic bacteria. Extremophiles 6:21–31 [CrossRef][PubMed]
    [Google Scholar]
  7. Cole C., Barber J. D., Barton G. J. ( 2008). The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:Web Server issueW197–W201 [CrossRef][PubMed]
    [Google Scholar]
  8. Cuff J. A., Clamp M. E., Siddiqui A. S., Finlay M., Barton G. J. ( 1998). JPred: a consensus secondary structure prediction server. Bioinformatics 14:892–893 [CrossRef][PubMed]
    [Google Scholar]
  9. Dame R. T., Goosen N. ( 2002). HU: promoting or counteracting DNA compaction?. FEBS Lett 529:151–156 [CrossRef][PubMed]
    [Google Scholar]
  10. Dillon S. C., Dorman C. J. ( 2010). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185–195 [CrossRef][PubMed]
    [Google Scholar]
  11. Distel D. L., Morrill W., MacLaren-Toussaint N., Franks D., Waterbury J. ( 2002). Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 52:2261–2269 [CrossRef][PubMed]
    [Google Scholar]
  12. Englander J., Klein E., Brumfeld V., Sharma A. K., Doherty A. J., Minsky A. ( 2004). DNA toroids: framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores. J Bacteriol 186:5973–5977 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. ( 1989). phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  14. Fuerst J. A. ( 2005). Intracellular compartmentation in planctomycetes. Annu Rev Microbiol 59:299–328 [CrossRef][PubMed]
    [Google Scholar]
  15. Fuerst J. A., Webb R. I. ( 1991). Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus . Proc Natl Acad Sci U S A 88:8184–8188 [CrossRef][PubMed]
    [Google Scholar]
  16. Ghosh S., Grove A. ( 2004). Histone-like protein HU from Deinococcus radiodurans binds preferentially to four-way DNA junctions. J Mol Biol 337:561–571 [CrossRef][PubMed]
    [Google Scholar]
  17. Ghosh S., Grove A. ( 2006). The Deinococcus radiodurans-encoded HU protein has two DNA-binding domains. Biochemistry 45:1723–1733 [CrossRef][PubMed]
    [Google Scholar]
  18. Grove A. ( 2010). Functional evolution of bacterial histone-like HU proteins. Curr Issues Mol Biol 13:1–12[PubMed]
    [Google Scholar]
  19. Grove A., Lim L. ( 2001). High-affinity DNA binding of HU protein from the hyperthermophile Thermotoga maritima . J Mol Biol 311:491–502 [CrossRef][PubMed]
    [Google Scholar]
  20. Hansen J. C., Lu X., Ross E. D., Woody R. W. ( 2006). Intrinsic protein disorder, amino acid composition, and histone terminal domains. J Biol Chem 281:1853–1856 [CrossRef][PubMed]
    [Google Scholar]
  21. Jobb G., von Haeseler A., Strimmer K. ( 2004). treefinder: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18 [CrossRef][PubMed]
    [Google Scholar]
  22. Keane T. M., Creevey C. J., Pentony M. M., Naughton T. J., Mclnerney J. O. ( 2006). Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:29 [CrossRef][PubMed]
    [Google Scholar]
  23. Kumar S., Sardesai A. A., Basu D., Muniyappa K., Hasnain S. E. ( 2010). DNA clasping by mycobacterial HU: the C-terminal region of HupB mediates increased specificity of DNA binding. PLoS ONE 5:e12551 [CrossRef][PubMed]
    [Google Scholar]
  24. Laine B., Kmiecik D., Sautiere P., Biserte G., Cohen-Solal M. ( 1980). Complete amino-acid sequences of DNA-binding proteins HU-1 and HU-2 from Escherichia coli . Eur J Biochem 103:447–461 [CrossRef][PubMed]
    [Google Scholar]
  25. Lawrence J. G., Ochman H. ( 1997). Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397 [CrossRef][PubMed]
    [Google Scholar]
  26. Lieber A., Leis A., Kushmaro A., Minsky A., Medalia O. ( 2009). Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus . J Bacteriol 191:1439–1445 [CrossRef][PubMed]
    [Google Scholar]
  27. Lindsay M. R., Webb R. I., Strous M., Jetten M. S., Butler M. K., Forde R. J., Fuerst J. A. ( 2001). Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175:413–429 [CrossRef][PubMed]
    [Google Scholar]
  28. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. ( 1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260 [CrossRef][PubMed]
    [Google Scholar]
  29. Luijsterburg M. S., Noom M. C., Wuite G. J., Dame R. T. ( 2006). The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol 156:262–272 [CrossRef][PubMed]
    [Google Scholar]
  30. Luijsterburg M. S., White M. F., van Driel R., Dame R. T. ( 2008). The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43:393–418 [CrossRef][PubMed]
    [Google Scholar]
  31. Maeder D. L., Bohm L. ( 1991). The C-domain in the H1 histone is structurally conserved. Biochim Biophys Acta 1076:233–238 [CrossRef][PubMed]
    [Google Scholar]
  32. Medrano-Soto A., Moreno-Hagelsieb G., Vinuesa P., Christen J. A., Collado-Vides J. ( 2004). Successful lateral transfer requires codon usage compatibility between foreign genes and recipient genomes. Mol Biol Evol 21:1884–1894 [CrossRef][PubMed]
    [Google Scholar]
  33. Mertens K., Lantsheer L., Samuel J. E. ( 2005). A minimal set of DNA repair genes is sufficient for survival of Coxiella burnetii under oxidative stress. Ann N Y Acad Sci 1063:73–75 [CrossRef][PubMed]
    [Google Scholar]
  34. Mukherjee A., DiMario P. J., Grove A. ( 2009). Mycobacterium smegmatis histone-like protein Hlp is nucleoid associated. FEMS Microbiol Lett 291:232–240 [CrossRef][PubMed]
    [Google Scholar]
  35. Prabhakar S., Annapurna P. S., Jain N. K., Dey A. B., Tyagi J. S., Prasad H. K. ( 1998). Identification of an immunogenic histone-like protein (HLPMt) of Mycobacterium tuberculosis . Tuber Lung Dis 79:43–53 [CrossRef][PubMed]
    [Google Scholar]
  36. Remacha M., Kaul R., Sherburne R., Wenman W. M. ( 1996). Functional domains of chlamydial histone H1-like protein. Biochem J 315:481–486[PubMed]
    [Google Scholar]
  37. Rouvière-Yaniv J., Gros F. ( 1975). Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli . Proc Natl Acad Sci U S A 72:3428–3432 [CrossRef][PubMed]
    [Google Scholar]
  38. Rouvière-Yaniv J., Kjeldgaard N. O. ( 1979). Native Escherichia coli HU protein is a heterotypic dimer. FEBS Lett 106:297–300 [CrossRef][PubMed]
    [Google Scholar]
  39. Rouvière-Yaniv J., Yaniv M., Germond J. E. ( 1979). E. coli DNA binding protein HU forms nucleosomelike structure with circular double-stranded DNA. Cell 17:265–274[PubMed] [CrossRef]
    [Google Scholar]
  40. Salerno P., Larsson J., Bucca G., Laing E., Smith C. P., Flärdh K. ( 2009). One of the two genes encoding nucleoid-associated HU proteins in Streptomyces coelicolor is developmentally regulated and specifically involved in spore maturation. J Bacteriol 191:6489–6500 [CrossRef][PubMed]
    [Google Scholar]
  41. Santarella-Mellwig R., Franke J., Jaedicke A., Gorjanacz M., Bauer U., Budd A., Mattaj I. W., Devos D. P. ( 2010). The compartmentalized bacteria of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8:e1000281 [CrossRef][PubMed]
    [Google Scholar]
  42. Sarkar T., Vitoc I., Mukerji I., Hud N. V. ( 2007). Bacterial protein HU dictates the morphology of DNA condensates produced by crowding agents and polyamines. Nucleic Acids Res 35:951–961 [CrossRef][PubMed]
    [Google Scholar]
  43. Shen C. H., Chiang Y. C., Hsu C. H., Yang M. K. ( 2007). Identification and characterization of two uvrA genes of Xanthomonas axonopodis pathovar citri . Mol Genet Genomics 277:149–160 [CrossRef][PubMed]
    [Google Scholar]
  44. Shindo H., Furubayashi A., Shimizu M., Miyake M., Imamoto F. ( 1992). Preferential binding of E.coli histone-like protein HUα to negatively supercoiled DNA. Nucleic Acids Res 20:1553–1558 [CrossRef][PubMed]
    [Google Scholar]
  45. Spurio R., Dürrenberger M., Falconi M., La Teana A., Pon C. L., Gualerzi C. O. ( 1992). Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy. Mol Gen Genet 231:201–211[PubMed] [CrossRef]
    [Google Scholar]
  46. Swinger K. K., Rice P. A. ( 2004). IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 14:28–35 [CrossRef][PubMed]
    [Google Scholar]
  47. Tanaka H., Goshima N., Kohno K., Kano Y., Imamoto F. ( 1993). Properties of DNA-binding of HU heterotypic and homotypic dimers from Escherichia coli . J Biochem 113:568–572[PubMed]
    [Google Scholar]
  48. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  49. van Noort J., Verbrugge S., Goosen N., Dekker C., Dame R. T. ( 2004). Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc Natl Acad Sci U S A 101:6969–6974 [CrossRef][PubMed]
    [Google Scholar]
  50. Wagner M., Horn M. ( 2006). The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249 [CrossRef][PubMed]
    [Google Scholar]
  51. White S. W., Appelt K., Wilson K. S., Tanaka I. ( 1989). A protein structural motif that bends DNA. Proteins 5:281–288 [CrossRef][PubMed]
    [Google Scholar]
  52. Whiteford D. C., Klingelhoets J. J., Bambenek M. H., Dahl J. L. ( 2011). Deletion of the histone-like protein (Hlp) from Mycobacterium smegmatis results in increased sensitivity to UV exposure, freezing and isoniazid. Microbiology 157:327–335 [CrossRef][PubMed]
    [Google Scholar]
  53. Yang M. K., Chou M. E., Yang Y. C. ( 2001). Molecular characterization and expression of the recX gene of Xanthomonas campestris pv. citri . Curr Microbiol 42:257–263 [CrossRef][PubMed]
    [Google Scholar]
  54. Yang J. C., Madupu R., Durkin A. S., Ekborg N. A., Pedamallu C. S., Hostetler J. B., Radune D., Toms B. S., Henrissat B. et al. ( 2009). The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS ONE 4:e6085 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047605-0
Loading
/content/journal/micro/10.1099/mic.0.047605-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error