1887

Abstract

Nucleolin is a prominent nucleolar protein that is mobilized into the cytoplasm during infection by enteropathogenic (EPEC). Nucleolin also exists at low levels at the cell surface of eukaryotic cells and here we show that upon infection of an intestinal cell model, EPEC recruits and subsequently sequesters cell-surface EGFP-nucleolin into extracellularly located bacterial microcolonies. The recruitment of nucleolin was evident around bacteria within the centre of the microcolonies that were not directly associated with actin-based pedestals. Incubation of host intestinal cells with different ligands that specifically bind nucleolin impaired the ability of EPEC to disrupt epithelial barrier function but did not inhibit bacterial attachment or other effector-driven processes such as pedestal formation or microvilli effacement. Taken together, this work suggests that EPEC exploits two spatially distinct pools of nucleolin during the infection process.

Funding
This study was supported by the:
  • Wellcome Trust
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047506-0
2011-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1761.html?itemId=/content/journal/micro/10.1099/mic.0.047506-0&mimeType=html&fmt=ahah

References

  1. Chen H. D., Frankel G. ( 2005). Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol Rev 29:83–98 [View Article][PubMed]
    [Google Scholar]
  2. Chen D., Huang S. ( 2001). Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol 153:169–176 [View Article][PubMed]
    [Google Scholar]
  3. Christian S., Pilch J., Akerman M. E., Porkka K., Laakkonen P., Ruoslahti E. ( 2003). Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163:871–878 [View Article][PubMed]
    [Google Scholar]
  4. de Verdugo U. R., Selinka H. C., Huber M., Kramer B., Kellermann J., Hofschneider P. H., Kandolf R. ( 1995). Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses. J Virol 69:6751–6757[PubMed]
    [Google Scholar]
  5. Dean P., Kenny B. ( 2004). Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol Microbiol 54:665–675 [View Article][PubMed]
    [Google Scholar]
  6. Dean P., Kenny B. ( 2009). The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr Opin Microbiol 12:101–109 [View Article][PubMed]
    [Google Scholar]
  7. Dean P., Maresca M., Schüller S., Phillips A. D., Kenny B. ( 2006). Potent diarrheagenic mechanism mediated by the cooperative action of three enteropathogenic Escherichia coli-injected effector proteins. Proc Natl Acad Sci U S A 103:1876–1881 [View Article][PubMed]
    [Google Scholar]
  8. Dean P., Scott J. A., Knox A. A., Quitard S., Watkins N. J., Kenny B. ( 2010). The enteropathogenic E. coli effector EspF targets and disrupts the nucleolus by a process regulated by mitochondrial dysfunction. PLoS Pathog 6:e1000961 [View Article][PubMed]
    [Google Scholar]
  9. Ginisty H., Sicard H., Roger B., Bouvet P. ( 1999). Structure and functions of nucleolin. J Cell Sci 112:761–772[PubMed]
    [Google Scholar]
  10. Holmes A., Mühlen S., Roe A. J., Dean P. ( 2010). The EspF effector, a bacterial pathogen’s Swiss army knife. Infect Immun 78:4445–4453 [View Article][PubMed]
    [Google Scholar]
  11. Hovanessian A. G. ( 2006). Midkine, a cytokine that inhibits HIV infection by binding to the cell surface expressed nucleolin. Cell Res 16:174–181 [View Article][PubMed]
    [Google Scholar]
  12. Hovanessian A. G., Puvion-Dutilleul F., Nisole S., Svab J., Perret E., Deng J. S., Krust B. ( 2000). The cell-surface-expressed nucleolin is associated with the actin cytoskeleton. Exp Cell Res 261:312–328 [View Article][PubMed]
    [Google Scholar]
  13. Kenny B., DeVinney R., Stein M., Reinscheid D. J., Frey E. A., Finlay B. B. ( 1997). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–520 [View Article][PubMed]
    [Google Scholar]
  14. Kleinman H. K., Weeks B. S., Cannon F. B., Sweeney T. M., Sephel G. C., Clement B., Zain M., Olson M. O., Jucker M., Burrous B. A. ( 1991). Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide. Arch Biochem Biophys 290:320–325 [View Article][PubMed]
    [Google Scholar]
  15. Krantz S., Salazar R., Brandt R., Kellermann J., Lottspeich F. ( 1995). Purification and partial amino acid sequencing of a fructosyllysine-specific binding protein from cell membranes of the monocyte-like cell line U937. Biochim Biophys Acta 1266:109–112 [View Article][PubMed]
    [Google Scholar]
  16. Losfeld M. E., Khoury D. E., Mariot P., Carpentier M., Krust B., Briand J. P., Mazurier J., Hovanessian A. G., Legrand D. ( 2009). The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells. Exp Cell Res 315:357–369 [View Article][PubMed]
    [Google Scholar]
  17. Nisole S., Krust B., Callebaut C., Guichard G., Muller S., Briand J. P., Hovanessian A. G. ( 1999). The anti-HIV pseudopeptide HB-19 forms a complex with the cell-surface-expressed nucleolin independent of heparan sulfate proteoglycans. J Biol Chem 274:27875–27884 [View Article][PubMed]
    [Google Scholar]
  18. Nougayrède J. P., Fernandes P. J., Donnenberg M. S. ( 2003). Adhesion of enteropathogenic Escherichia coli to host cells. Cell Microbiol 5:359–372 [View Article][PubMed]
    [Google Scholar]
  19. Reyes-Reyes E. M., Akiyama S. K. ( 2008). Cell-surface nucleolin is a signal transducing P-selectin binding protein for human colon carcinoma cells. Exp Cell Res 314:2212–2223 [View Article][PubMed]
    [Google Scholar]
  20. Said E. A., Krust B., Nisole S., Svab J., Briand J. P., Hovanessian A. G. ( 2002). The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J Biol Chem 277:37492–37502 [View Article][PubMed]
    [Google Scholar]
  21. Said E. A., Courty J., Svab J., Delbé J., Krust B., Hovanessian A. G. ( 2005). Pleiotrophin inhibits HIV infection by binding the cell surface-expressed nucleolin. FEBS J 272:4646–4659 [View Article][PubMed]
    [Google Scholar]
  22. Sinclair J. F., O'Brien A. D. ( 2002). Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157 : H7. J Biol Chem 277:2876–2885 [View Article][PubMed]
    [Google Scholar]
  23. Sinclair J. F., O'Brien A. D. ( 2004). Intimin types alpha, beta, and gamma bind to nucleolin with equivalent affinity but lower avidity than to the translocated intimin receptor. J Biol Chem 279:33751–33758 [View Article][PubMed]
    [Google Scholar]
  24. Sinclair J. F., Dean-Nystrom E. A., O'Brien A. D. ( 2006). The established intimin receptor Tir and the putative eucaryotic intimin receptors nucleolin and beta1 integrin localize at or near the site of enterohemorrhagic Escherichia coli O157 : H7 adherence to enterocytes in vivo. Infect Immun 74:1255–1265 [View Article][PubMed]
    [Google Scholar]
  25. Srivastava M., Pollard H. B. ( 1999). Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13:1911–1922[PubMed]
    [Google Scholar]
  26. Storck S., Shukla M., Dimitrov S., Bouvet P. ( 2007). Functions of the histone chaperone nucleolin in diseases. Subcell Biochem 41:125–144 [View Article][PubMed]
    [Google Scholar]
  27. Take M., Tsutsui J., Obama H., Ozawa M., Nakayama T., Maruyama I., Arima T., Muramatsu T. ( 1994). Identification of nucleolin as a binding protein for midkine (MK) and heparin-binding growth associated molecule (HB-GAM). J Biochem 116:1063–1068[PubMed]
    [Google Scholar]
  28. Ugrinova I., Monier K., Ivaldi C., Thiry M., Storck S., Mongelard F., Bouvet P. ( 2007). Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication. BMC Mol Biol 8:66 [View Article][PubMed]
    [Google Scholar]
  29. Watanabe T., Hirano K., Takahashi A., Yamaguchi K., Beppu M., Fujiki H., Suganuma M. ( 2010). Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. Biol Pharm Bull 33:796–803 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047506-0
Loading
/content/journal/micro/10.1099/mic.0.047506-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error