1887

Abstract

The protein MsRbpA from rescues RNA polymerase (RNAP) from the inhibitory effect of rifampicin (Rif). We have reported previously that MsRbpA interacts with the β-subunit of RNAP and that the effect of MsRbpA on Rif-resistant (Rif) RNAP is minimal. Here we attempted to gain molecular insights into the mechanism of action of this protein with respect to its role in rescuing RNAP from Rif-mediated transcription inhibition. Our experimental approach comprised multiple-round transcription assays, fluorescence spectroscopy, MS and surface plasmon resonance in order to meet the above objective. Based on our molecular studies we propose here that Rif is released from its binding site in the RNAP–Rif complex in the presence of MsRbpA. Biophysical studies reveal that the location of MsRbpA on RNAP is at the junction of the β- and β′-subunits, close to the Rif-binding site and the (i+1) site on RNAP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047480-0
2011-07-01
2020-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2056.html?itemId=/content/journal/micro/10.1099/mic.0.047480-0&mimeType=html&fmt=ahah

References

  1. Artsimovitch I., Svetlov V., Anthony L., Burgess R. R., Landick R.. ( 2000;). RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition signal in vitro. J Bacteriol182:6027–6035 [CrossRef][PubMed]
    [Google Scholar]
  2. Artsimovitch I., Vassylyeva M. N., Svetlov D., Svetlov V., Perederina A., Igarashi N., Matsugaki N., Wakatsuki S., Tahirov T. H., Vassylyev D. G.. ( 2005;). Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell122:351–363 [CrossRef][PubMed]
    [Google Scholar]
  3. Bandwar R. P., Tang G. Q., Patel S. S.. ( 2006;). Sequential release of promoter contacts during transcription initiation to elongation transition. J Mol Biol360:466–483 [CrossRef][PubMed]
    [Google Scholar]
  4. Bhat J., Rane R., Solapure S. M., Sarkar D., Sharma U., Harish M. N., Lamb S., Plant D., Alcock P. et al. ( 2006;). High-throughput screening of RNA polymerase inhibitors using a fluorescent UTP analog. J Biomol Screen11:968–976 [CrossRef][PubMed]
    [Google Scholar]
  5. Calleja C., Pascussi J. M., Mani J. C., Maurel P., Vilarem M. J.. ( 1998;). The antibiotic rifampicin is a nonsteroidal ligand and activator of the human glucocorticoid receptor. Nat Med4:92–96 [CrossRef][PubMed]
    [Google Scholar]
  6. Campbell E. A., Korzheva N., Mustaev A., Murakami K., Nair S., Goldfarb A., Darst S. A.. ( 2001;). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell104:901–912 [CrossRef][PubMed]
    [Google Scholar]
  7. Cantor C. R., Schimmel P. R.. ( 1980;). Biophysical Chemistry433–463 San Francisco: Freeman;
    [Google Scholar]
  8. Carpousis A. J., Gralla J. D.. ( 1985;). Interaction of RNA polymerase with lacUV5 promoter DNA during mRNA initiation and elongation. Footprinting, methylation, and rifampicin-sensitivity changes accompanying transcription initiation. J Mol Biol183:165–177[CrossRef]
    [Google Scholar]
  9. Chatterji D., Gopal V.. ( 1996;). Fluorescence spectroscopy analysis of active and regulatory sites of RNA polymerase. Methods Enzymol274:456–478
    [Google Scholar]
  10. Dey A., Verma A. K., Chatterji D.. ( 2010;). Role of an RNA polymerase interacting protein, MsRbpA, from Mycobacterium smegmatis in phenotypic tolerance to rifampicin. Microbiology156:873–883 [CrossRef][PubMed]
    [Google Scholar]
  11. Flåtten I., Morigen, Skarstad K.. ( 2009;). DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Mol Microbiol71:1018–1030 [CrossRef][PubMed]
    [Google Scholar]
  12. Förster T.. ( 1948;). Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physiol (Leipzig)437:55–75 [CrossRef]
    [Google Scholar]
  13. Gentry D. R., Burgess R. R.. ( 1993;). Cross-linking of Escherichia coli RNA polymerase subunits: identification of β′ as the binding site of ω. Biochemistry32:11224–11227 [CrossRef][PubMed]
    [Google Scholar]
  14. Hinkle D. C., Mangel W. F., Chamberlin M. J.. ( 1972;). Studies of the binding of Escherichia coli RNA polymerase to DNA. IV. The effect of rifampicin on binding and on RNA chain initiation. J Mol Biol70:209–220 [CrossRef][PubMed]
    [Google Scholar]
  15. Jain V., Sujatha S., Ojha A. K., Chatterji D.. ( 2005;). Identification and characterization of rel promoter element of Mycobacterium tuberculosis . Gene351:149–157 [CrossRef][PubMed]
    [Google Scholar]
  16. Jin D. J., Gross C. A.. ( 1988;). Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol202:45–58 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar K. P., Chatterji D.. ( 1990;). Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase. Biochemistry29:317–322 [CrossRef][PubMed]
    [Google Scholar]
  18. Kumar K. P., Reddy P. S., Chatterji D.. ( 1992;). Proximity relationship between the active site of Escherichia coli RNA polymerase and rifampicin binding domain: a resonance energy-transfer study. Biochemistry31:7519–7526 [CrossRef][PubMed]
    [Google Scholar]
  19. Lakowicz J. R.. ( 1983;). Principles of Fluorescence Spectroscopy303–339 New York: Plenum Press;
    [Google Scholar]
  20. Lee S. J., Gralla J. D.. ( 2004;). Osmo-regulation of bacterial transcription via poised RNA polymerase. Mol Cell14:153–162 [CrossRef][PubMed]
    [Google Scholar]
  21. Lisitsyn N. A., Sverdlov E. D., Moiseyeva E. P., Danilevskaya O. N., Nikiforov V. G.. ( 1984;). Mutation to rifampicin resistance at the beginning of the RNA polymerase beta subunit gene in Escherichia coli. . Mol Gen Genet196:173–174[CrossRef]
    [Google Scholar]
  22. McClure W. R., Cech C. L.. ( 1978;). On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem253:8949–8956[PubMed]
    [Google Scholar]
  23. Mukherjee R., Chatterji D.. ( 2008;). Stationary phase induced alterations in mycobacterial RNA polymerase assembly: a cue to its phenotypic resistance towards rifampicin. Biochem Biophys Res Commun369:899–904 [CrossRef][PubMed]
    [Google Scholar]
  24. Newell K. V., Thomas D. P., Brekasis D., Paget M. S. B.. ( 2006;). The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor . Mol Microbiol60:687–696 [CrossRef][PubMed]
    [Google Scholar]
  25. Nudler E.. ( 2009;). RNA polymerase active center: the molecular engine of transcription. Annu Rev Biochem78:335–361 [CrossRef][PubMed]
    [Google Scholar]
  26. Opalka N., Brown J., Lane W. J., Twist K. A., Landick R., Asturias F. J., Darst S. A.. ( 2010;). Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol14:8
    [Google Scholar]
  27. Rabussay D., Zillig W.. ( 1969;). A rifampicin resistent RNA-polymerase from E. coli altered in the beta-subunit. FEBS Lett5:104–106 [CrossRef][PubMed]
    [Google Scholar]
  28. Stryer L.. ( 1978;). Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem47:819–846 [CrossRef][PubMed]
    [Google Scholar]
  29. Topal M. D., Fresco J. R.. ( 1980;). Fluorescence of terbium ion–nucleic acid complexes: a sensitive specific probe for unpaired residues in nucleic acids. Biochemistry19:5531–5537 [CrossRef][PubMed]
    [Google Scholar]
  30. Tyagi S. C., Wu F. Y.-H.. ( 1987;). Synthesis and characterization of fluorescent dinucleotide substrate for the DNA-dependent RNA polymerase from Escherichia coli . J Biol Chem262:10684–10688[PubMed]
    [Google Scholar]
  31. Węgrzyn A., Szalewska-Pałasz A., Błaszczak A., Liberek K., Węgrzyn G.. ( 1998;). Differential inhibition of transcription from σ70- and σ32-dependent promoters by rifampicin. FEBS Lett440:172–174 [CrossRef][PubMed]
    [Google Scholar]
  32. Wehrli W., Handschin J., Wunderli W.. ( 1976;). RNA Polymerase397–412 Chamberlin M. J., Losick R.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Wichelhaus T., Schäfer V., Brade V., Böddinghaus B.. ( 2001;). Differential effect of rpoB mutations on antibacterial activities of rifampicin and KRM-1648 against Staphylococcus aureus . J Antimicrob Chemother47:153–156 [CrossRef][PubMed]
    [Google Scholar]
  34. Williams D. L., Spring L., Collins L., Miller L. P., Heifets L. B., Gangadharam P. R., Gillis T. P.. ( 1998;). Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis . Antimicrob Agents Chemother42:1853–1857[PubMed]
    [Google Scholar]
  35. Wyss E., Wehrli W.. ( 1976;). The use of dextran-coated charcoal for kinetic measurements: interaction between rifampicin and DNA-dependent RNA polymerase of Escherichia coli . Anal Biochem70:547–553 [CrossRef][PubMed]
    [Google Scholar]
  36. Xu M., Zhou Y. N., Goldstein B. P., Jin D. J.. ( 2005;). Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics. J Bacteriol187:2783–2792 [CrossRef][PubMed]
    [Google Scholar]
  37. Yarbrough L. R., Wu F. Y., Wu C. W.. ( 1976;). Molecular mechanism of the rifampicin–RNA polymerase interaction. Biochemistry15:2669–2676 [CrossRef][PubMed]
    [Google Scholar]
  38. Yarbrough L. R., Schlageck J. G., Baughman M.. ( 1979;). Synthesis and properties of fluorescent nucleotide substrates for DNA-dependent RNA polymerases. J Biol Chem254:12069–12073[PubMed]
    [Google Scholar]
  39. Zenkin N., Kulbachinskiy A., Bass I., Nikiforov V.. ( 2005;). Different rifampin sensitivities of Escherichia coli and Mycobacterium tuberculosis RNA polymerases are not explained by the difference in the β-subunit rifampin regions I and II. Antimicrob Agents Chemother49:1587–1590 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047480-0
Loading
/content/journal/micro/10.1099/mic.0.047480-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error