1887

Abstract

Shiga toxin-producing (STEC) colonizes the human intestine, causing haemorrhagic colitis and haemolytic uraemic syndrome (HUS). Treatment options are limited to intravenous fluids in part because sublethal doses of some antibiotics have been shown to stimulate increased toxin release and enhance the risk of progression to HUS. Preventative antimicrobial agents, especially those that build on the natural antimicrobial action of the host defence, may provide a better option. In order to survive the acid stress of gastric passage, STEC is equipped with numerous acid resistance and DNA repair mechanisms. Inhibition of acid-induced DNA repair may offer a strategy to target survival of ingested STEC. We report here that brief pretreatment with a novel antimicrobial peptide, which was previously shown to inhibit bacterial DNA repair, significantly and profoundly reduces survival of acid-stressed O157 : H7 and non-O157 : H7 STEC seropathotypes that are highly associated with HUS. Reduction in survival rates of STEC range from 3 to 5 log. We also show that peptide/acid treatment results in little or no increase in toxin production, thereby reducing the risk of progression to HUS. This study identifies the peptide wrwycr as a potential new candidate for a preventative antimicrobial for STEC infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047365-0
2011-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1768.html?itemId=/content/journal/micro/10.1099/mic.0.047365-0&mimeType=html&fmt=ahah

References

  1. Ake J. A. , Jelacic S. , Ciol M. A. , Watkins S. L. , Murray K. F. , Christie D. L. , Klein E. J. , Tarr P. I. . ( 2005; ). Relative nephroprotection during Escherichia coli O157 : H7 infections: association with intravenous volume expansion. . Pediatrics 115:, e673–e680. [CrossRef].[PubMed]
    [Google Scholar]
  2. Azaro M. A. , Landy A. . ( 2002;). Lambda integrase and the lambda Int family. . In Mobile DNA II, pp. 118–148. Edited by Craig N. L. , Craigie R. , Gellert M. , Lambowitz A. M. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. Banatvala N. , Griffin P. M. , Greene K. D. , Barrett T. J. , Bibb W. F. , Green J. H. , Wells J. G. . Hemolytic Uremic Syndrome Study Collaborators ( 2001; ). The United States national prospective hemolytic uremic syndrome study: microbiologic, serologic, clinical, and epidemiologic findings. . J Infect Dis 183:, 1063–1070. [CrossRef].[PubMed]
    [Google Scholar]
  4. Bavaro M. F. . ( 2009; ). Escherichia coli O157: what every internist and gastroenterologist should know. . Curr Gastroenterol Rep 11:, 301–306. [CrossRef].[PubMed]
    [Google Scholar]
  5. Boldt J. L. , Pinilla C. , Segall A. M. . ( 2004; ). Reversible inhibitors of lambda integrase-mediated recombination efficiently trap Holliday junction intermediates and form the basis of a novel assay for junction resolution. . J Biol Chem 279:, 3472–3483. [CrossRef].[PubMed]
    [Google Scholar]
  6. Cassell G. , Klemm M. , Pinilla C. , Segall A. . ( 2000; ). Dissection of bacteriophage lambda site-specific recombination using synthetic peptide combinatorial libraries. . J Mol Biol 299:, 1193–1202. [CrossRef].[PubMed]
    [Google Scholar]
  7. Coombes B. K. , Wickham M. E. , Mascarenhas M. , Gruenheid S. , Finlay B. B. , Karmali M. A. . ( 2008; ). Molecular analysis as an aid to assess the public health risk of non-O157 Shiga toxin-producing Escherichia coli strains. . Appl Environ Microbiol 74:, 2153–2160. [CrossRef].[PubMed]
    [Google Scholar]
  8. Cox M. M. , Goodman M. F. , Kreuzer K. N. , Sherratt D. J. , Sandler S. J. , Marians K. J. . ( 2000; ). The importance of repairing stalled replication forks. . Nature 404:, 37–41. [CrossRef].[PubMed]
    [Google Scholar]
  9. Dean-Nystrom E. A. , Melton-Celsa A. R. , Pohlenz J. F. , Moon H. W. , O’Brien A. D. . ( 2003; ). Comparative pathogenicity of Escherichia coli O157 and intimin-negative non-O157 Shiga toxin-producing E coli strains in neonatal pigs. . Infect Immun 71:, 6526–6533. [CrossRef].[PubMed]
    [Google Scholar]
  10. Dundas S. , Todd W. T. , Stewart A. I. , Murdoch P. S. , Chaudhuri A. K. , Hutchinson S. J. . ( 2001; ). The central Scotland Escherichia coli O157 : H7 outbreak: risk factors for the hemolytic uremic syndrome and death among hospitalized patients. . Clin Infect Dis 33:, 923–931. [CrossRef].[PubMed]
    [Google Scholar]
  11. Foster J. W. . ( 2004; ). Escherichia coli acid resistance: tales of an amateur acidophile. . Nat Rev Microbiol 2:, 898–907. [CrossRef].[PubMed]
    [Google Scholar]
  12. Gentry M. K. , Dalrymple J. M. . ( 1980; ). Quantitative microtiter cytotoxicity assay for Shigella toxin. . J Clin Microbiol 12:, 361–366.[PubMed]
    [Google Scholar]
  13. Gunderson C. W. , Segall A. M. . ( 2006; ). DNA repair, a novel antibacterial target: Holliday junction-trapping peptides induce DNA damage and chromosome segregation defects. . Mol Microbiol 59:, 1129–1148. [CrossRef].[PubMed]
    [Google Scholar]
  14. Gunderson C. W. , Boldt J. L. , Authement R. N. , Segall A. M. . ( 2009; ). Peptide wrwycr inhibits the excision of several prophages and traps Holliday junctions inside bacteria. . J Bacteriol 191:, 2169–2176. [CrossRef].[PubMed]
    [Google Scholar]
  15. House B. , Kus J. V. , Prayitno N. , Mair R. , Que L. , Chingcuanco F. , Gannon V. , Cvitkovitch D. G. , Barnett Foster D. . ( 2009; ). Acid-stress-induced changes in enterohaemorrhagic Escherichia coli O157 : H7 virulence. . Microbiology 155:, 2907–2918. [CrossRef].[PubMed]
    [Google Scholar]
  16. Ito T. , Akino E. , Hiramatsu K. . ( 1997; ). [Evaluation of antibiotics used for enterohemorrhagic Escherichia coli O157 enteritis – effect of various antibiotics on extracellular release of verotoxin]. . Kansenshogaku Zasshi 71:, 130–135 (in Japanese).[PubMed] [CrossRef]
    [Google Scholar]
  17. Karmali M. A. . ( 2004; ). Infection by Shiga toxin-producing Escherichia coli: an overview. . Mol Biotechnol 26:, 117–122. [CrossRef].[PubMed]
    [Google Scholar]
  18. Karmali M. A. , Petric M. , Lim C. , Cheung R. , Arbus G. S. . ( 1985; ). Sensitive method for detecting low numbers of verotoxin-producing Escherichia coli in mixed cultures by use of colony sweeps and polymyxin extraction of verotoxin. . J Clin Microbiol 22:, 614–619.[PubMed]
    [Google Scholar]
  19. Karmali M. A. , Mascarenhas M. , Shen S. , Ziebell K. , Johnson S. , Reid-Smith R. , Isaac-Renton J. , Clark C. , Rahn K. , Kaper J. B. . ( 2003; ). Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. . J Clin Microbiol 41:, 4930–4940. [CrossRef].[PubMed]
    [Google Scholar]
  20. Kepple K. V. , Boldt J. L. , Segall A. M. . ( 2005; ). Holliday junction-binding peptides inhibit distinct junction-processing enzymes. . Proc Natl Acad Sci U S A 102:, 6867–6872. [CrossRef].[PubMed]
    [Google Scholar]
  21. Kepple K. V. , Patel N. , Salamon P. , Segall A. M. . ( 2008; ). Interactions between branched DNAs and peptide inhibitors of DNA repair. . Nucleic Acids Res 36:, 5319–5334. [CrossRef].[PubMed]
    [Google Scholar]
  22. Kimmitt P. T. , Harwood C. R. , Barer M. R. . ( 2000; ). Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. . Emerg Infect Dis 6:, 458–465. [CrossRef].[PubMed]
    [Google Scholar]
  23. Kunkel T. A. . ( 1984; ). Mutational specificity of depurination. . Proc Natl Acad Sci U S A 81:, 1494–1498. [CrossRef].[PubMed]
    [Google Scholar]
  24. Kuzminov A. . ( 1999; ). Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. . Microbiol Mol Biol Rev 63:, 751–813.[PubMed]
    [Google Scholar]
  25. Lin J. , Smith M. P. , Chapin K. C. , Baik H. S. , Bennett G. N. , Foster J. W. . ( 1996; ). Mechanisms of acid resistance in enterohemorrhagic Escherichia coli . . Appl Environ Microbiol 62:, 3094–3100.[PubMed]
    [Google Scholar]
  26. Michel B. , Boubakri H. , Baharoglu Z. , LeMasson M. , Lestini R. . ( 2007; ). Recombination proteins and rescue of arrested replication forks. . DNA Repair (Amst) 6:, 967–980. [CrossRef].[PubMed]
    [Google Scholar]
  27. Nataro J. P. , Kaper J. B. . ( 1998; ). Diarrheagenic Escherichia coli . . Clin Microbiol Rev 11:, 142–201.[PubMed]
    [Google Scholar]
  28. Palermo M. S. , Exeni R. A. , Fernández G. C. . ( 2009; ). Hemolytic uremic syndrome: pathogenesis and update of interventions. . Expert Rev Anti Infect Ther 7:, 697–707. [CrossRef].[PubMed]
    [Google Scholar]
  29. Scheiring J. , Andreoli S. P. , Zimmerhackl L. B. . ( 2008; ). Treatment and outcome of Shiga-toxin-associated hemolytic uremic syndrome (HUS). . Pediatr Nephrol 23:, 1749–1760. [CrossRef].[PubMed]
    [Google Scholar]
  30. Su L. Y. , Willner D. L. , Segall A. M. . ( 2010; ). An antimicrobial peptide that targets DNA repair intermediates in vitro inhibits Salmonella growth within murine macrophages. . Antimicrob Agents Chemother 54:, 1888–1899. [CrossRef].[PubMed]
    [Google Scholar]
  31. Tarr P. I. , Gordon C. A. , Chandler W. L. . ( 2005; ). Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. . Lancet 365:, 1073–1086.[PubMed]
    [Google Scholar]
  32. Walterspiel J. N. , Morrow A. L. , Cleary T. G. , Ashkenazi S. . ( 1992; ). Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin I. . Infection 20:, 25–29. [CrossRef].[PubMed]
    [Google Scholar]
  33. Withee J. , Williams M. , Disney T. , Schlosser W. , Bauer N. , Ebel E. . ( 2009; ). Streamlined analysis for evaluating the use of preharvest interventions intended to prevent Escherichia coli O157 : H7 illness in humans. . Foodborne Pathog Dis 6:, 817–825. [CrossRef].[PubMed]
    [Google Scholar]
  34. Wolf L. E. , Acheson D. W. K. , Lincicome L. L. , Kuesch G. T. . ( 1997; ). Subinhibitory concentrations of antibiotic increase the release of shiga-like toxin from Escherichia coli O157 : H7 in vitro . . In Proceedings of the 3rd International Symposium and Workshop on Shiga Toxin (Verotoxin)-Producing Escherichia coli infections, p. 60. Edited by Karmali M. A. . . Baltimore:: VTEC '97 Committee;.
    [Google Scholar]
  35. Wong C. S. , Jelacic S. , Habeeb R. L. , Watkins S. L. , Tarr P. I. . ( 2000; ). The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157 : H7 infections. . N Engl J Med 342:, 1930–1936. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047365-0
Loading
/content/journal/micro/10.1099/mic.0.047365-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1768 - 1775

The descriptions of the bars in panel (c) of Fig. 2 (page 1771) were incorrect: the white bars denote 25 μM wrwycr (not 75 μM) and the light grey bars denote 75 μM wrwycr (not 25 μM). The correct version of the figure legend is as follows: Peptide wrwycr-acid treatment. The impact of temperature, time and peptide concentration on survival of STEC strain 86-24 after 5 min incubation with PBS (black bars in all panels), 25 μM wrwycr (light grey bars in a and b; white bars in c), 50 μM wrwycr (dark grey bars, in c only) or 75 μM wrwycr (light grey bars, in c only) followed by timed acid stress exposure. Both wrwycr and acid stress incubations conducted at room temperature (a), 30 °C (b) or 37 °C (c). Asterisks indicate a peptide treatment with a statistically significant difference relative to untreated control, confidence interval 95%. U, Unstressed. Error bars indicate SD.



IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error