1887

Abstract

The 16S rRNA gene sequence of strains closely related to, but excluded from, was investigated and a conspicuously high number of polymorphic nucleotide positions due to intragenomic 16S rRNA gene heterogeneity was observed. The average frequency of 16S rRNA gene polymorphic nucleotide positions in 31 variant strains was 7.0×10, which is approximately ten times the level observed in validated strains of . Sixty-seven polymorphic nucleotide positions in seven strains most likely originated from the simultaneous presence of two distinct types of helix 18 as a consequence of prior recombinatorial events. The increased level of 16S rRNA gene polymorphism in commensal taxa excluded from the pathogenic species is unexplained. The heterogeneity imposes difficulties on rRNA gene-based classification and systematics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047233-0
2011-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1050.html?itemId=/content/journal/micro/10.1099/mic.0.047233-0&mimeType=html&fmt=ahah

References

  1. Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V. & Polz, M. F. ( 2004; ). Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186, 2629–2635.[CrossRef]
    [Google Scholar]
  2. Coenye, T. & Vandamme, P. ( 2003; ). Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 228, 45–49.[CrossRef]
    [Google Scholar]
  3. Condon, C., Liveris, D., Squires, C., Schwartz, I. & Squires, C. L. ( 1995; ). rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol 177, 4152–4156.
    [Google Scholar]
  4. Conville, P. S. & Witebsky, F. G. ( 2007; ). Analysis of multiple differing copies of the 16S rRNA gene in five clinical isolates and three type strains of Nocardia species and implications for species assignment. J Clin Microbiol 45, 1146–1151.[CrossRef]
    [Google Scholar]
  5. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A. & other authors ( 1995; ). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.[CrossRef]
    [Google Scholar]
  6. Hestekin, C. N. & Barron, A. E. ( 2006; ). The potential of electrophoretic mobility shift assays for clinical mutation detection. Electrophoresis 27, 3805–3815.[CrossRef]
    [Google Scholar]
  7. Kilian, M. ( 2005; ). Genus III Haemophilus Winslow, Broadhurst, Buchanan, Rogers and Smith 1917, 561AL. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, The Proteobacteria, Part B, The Gammproteobacteria, pp. 883–904. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  8. Kilian, M., Poulsen, K., Blomqvist, T., Håvarstein, L. S., Bek-Thomsen, M., Tettelin, H. & Sørensen, U. B. ( 2008; ). Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS ONE 3, e2683.[CrossRef]
    [Google Scholar]
  9. Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. ( 2000; ). rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66, 1328–1333.[CrossRef]
    [Google Scholar]
  10. Klappenbach, J. A., Saxman, P. R., Cole, J. R. & Schmidt, T. M. ( 2001; ). rrnDB: the ribosomal RNA operon copy number database. Nucleic Acids Res 29, 181–184.[CrossRef]
    [Google Scholar]
  11. Kuhnert, P., Frey, J., Lang, N. P. & Mayfield, L. ( 2002; ). Phylogenetic analysis of Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis clinical strains reveals a clear species clustering. Int J Syst Evol Microbiol 52, 1391–1395.[CrossRef]
    [Google Scholar]
  12. Lee, Z. M.-P., Bussema, C., III & Schmidt, T. M. ( 2009; ). rrnDB: documenting the number of rRNA and tRNA genes in Bacteria and Archaea. Nucleic Acids Res 37 (Database issue), D489–D493.[CrossRef]
    [Google Scholar]
  13. Ludwig, W. & Klenk, H.-P. ( 2001; ). Overview: a phylogenetic backbone and taxonomic framwork for prokaryotic systematics. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, The Archaea and the Deeply Branching and Phototrophic Bacteria, pp. 49–66. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  14. Marchandin, H., Teyssier, C., Siméon De Buochberg, M., Jean-Pierre, H., Carriere, C. & Jumas-Bilak, E. ( 2003; ). Intra-chromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy. Microbiology 149, 1493–1501.[CrossRef]
    [Google Scholar]
  15. McCrea, K. W., Xie, J., LaCross, N., Patel, M., Mukundan, D., Murphy, T. F., Marrs, C. F. & Gilsdorf, J. R. ( 2008; ). Relationships of nontypeable Haemophilus influenzae strains to hemolytic and nonhemolytic Haemophilus haemolyticus strains. J Clin Microbiol 46, 406–416.[CrossRef]
    [Google Scholar]
  16. Meats, E., Feil, E. J., Stringer, S., Cody, A. J., Goldstein, R., Kroll, J. S., Popovic, T. & Spratt, B. G. ( 2003; ). Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol 41, 1623–1636.[CrossRef]
    [Google Scholar]
  17. Michon, A. L., Aujoulat, F., Roudière, L., Soulier, O., Zorgniotti, I., Jumas-Bilak, E. & Marchandin, H. ( 2010; ). Intragenomic and intraspecific heterogeneity in rrs may surpass interspecific variability in a natural population of Veillonella. Microbiology 156, 2080–2091.[CrossRef]
    [Google Scholar]
  18. Murphy, T. F. ( 2010; ). Haemophilus species (including H. influenzae and chancroid). In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Medicine, 7th edn, vol. 2, Part III, Infectious Diseases and Their Etiologic Agents, pp. 2911–2919. Edited by G. L. Mandell, J. E. Bennett & R. Dolin. Philadelphia: Churchill Livingstone Elsevier.
  19. Murphy, T. F., Brauer, A. L., Sethi, S., Kilian, M., Cai, X. & Lesse, A. J. ( 2007; ). Haemophilus haemolyticus: a human respiratory tract commensal to be distinguished from Haemophilus influenzae. J Infect Dis 195, 81–89.[CrossRef]
    [Google Scholar]
  20. Nanamiya, H., Sato, M., Masuda, K., Sato, M., Wada, T., Suzuki, S., Natori, Y., Katano, M., Akanuma, G. & Kawamura, F. ( 2010; ). Bacillus subtilis mutants harbouring a single copy of the rRNA operon exhibit severe defects in growth and sporulation. Microbiology 156, 2944–2952.[CrossRef]
    [Google Scholar]
  21. Nørskov-Lauritsen, N., Overballe, M. D. & Kilian, M. ( 2009; ). Delineation of the species Haemophilus influenzae by phenotype, multilocus sequence phylogeny, and detection of marker genes. J Bacteriol 191, 822–831.[CrossRef]
    [Google Scholar]
  22. Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J. P. & Glöckner, F. O. ( 2007; ). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35, 7188–7196.[CrossRef]
    [Google Scholar]
  23. Quentin, R., Ruimy, R., Rosenau, A., Musser, J. M. & Christen, R. ( 1996; ). Genetic identification of cryptic genospecies of Haemophilus causing urogenital and neonatal infections by PCR using specific primers targeting genes coding for 16S rRNA. J Clin Microbiol 34, 1380–1385.
    [Google Scholar]
  24. Ridderberg, W., Fenger, M. G. & Nørskov-Lauritsen, N. ( 2010; ). Haemophilus influenzae may be untypable by the multilocus sequence typing scheme due to a complete deletion of the fucose operon. J Med Microbiol 59, 740–742.[CrossRef]
    [Google Scholar]
  25. Sacchi, C. T., Alber, D., Dull, P., Mothershed, E. A., Whitney, A. M., Barnett, G. A., Popovic, T. & Mayer, L. W. ( 2005; ). High level of sequence diversity in the 16S rRNA genes of Haemophilus influenzae isolates is useful for molecular subtyping. J Clin Microbiol 43, 3734–3742.[CrossRef]
    [Google Scholar]
  26. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  27. Tindall, B. J., Rosselló-Móra, R., Busse, H. J., Ludwig, W. & Kämpfer, P. ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60, 249–266.[CrossRef]
    [Google Scholar]
  28. Wang, Y. & Qian, P. Y. ( 2009; ). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4, e7401.[CrossRef]
    [Google Scholar]
  29. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  30. Woo, P. C., Lau, S. K., Teng, J. L., Tse, H. & Yuen, K. Y. ( 2008; ). Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14, 908–934.[CrossRef]
    [Google Scholar]
  31. Wuyts, J., Van de Peer, Y. & De Wachter, R. ( 2001; ). Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Res 29, 5017–5028.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047233-0
Loading
/content/journal/micro/10.1099/mic.0.047233-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error