1887

Abstract

CSV86 shows preferential utilization of aromatic compounds over glucose. Protein analysis and [C]glucose-binding studies of the outer membrane fraction of cells grown on different carbon sources revealed a 40 kDa protein that was transcriptionally induced by glucose and repressed by aromatics and succinate. Based on 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry analysis, the 40 kDa protein closely resembled the porin B of KT2440 and carbohydrate-selective porin OprB of various strains. The purified native protein (i) was estimated to be a homotrimer of 125 kDa with a subunit molecular mass of 40 kDa, (ii) displayed heat modifiability of electrophoretic mobility, (iii) showed channel conductance of 166 pS in 1 M KCl, (iv) permeated various sugars (mono-, di- and tri-saccharides), organic acids, amino acids and aromatic compounds, and (v) harboured a glucose-specific and saturable binding site with a dissociation constant of 1.3 µM. These results identify the glucose-inducible outer-membrane protein of CSV86 as a carbohydrate-selective protein OprB. Besides modulation of intracellular glucose-metabolizing enzymes and specific glucose-binding periplasmic space protein, the repression of OprB by aromatics and organic acids, even in the presence of glucose, also contributes significantly to the strain’s ability to utilize aromatics and organic acids over glucose.

Funding
This study was supported by the:
  • Department of Science and Technology, Government of India
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047191-0
2011-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1531.html?itemId=/content/journal/micro/10.1099/mic.0.047191-0&mimeType=html&fmt=ahah

References

  1. Adewoye L. O., Worobec E. A. ( 2000). Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of Pseudomonas aeruginosa . Gene 253:323–330 [View Article][PubMed]
    [Google Scholar]
  2. Adewoye L. O., Tschetter L., O’Neil J., Worobec E. A. ( 1998). Channel specificity and secondary structure of the glucose-inducible porins of Pseudomonas spp. J Bioenerg Biomembr 30:257–267 [View Article][PubMed]
    [Google Scholar]
  3. Alexander M. ( 1981). Biodegradation of chemicals of environmental concern. Science 211:132–138 [View Article][PubMed]
    [Google Scholar]
  4. Basu A., Phale P. S. ( 2006). Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86. FEMS Microbiol Lett 259:311–316 [View Article][PubMed]
    [Google Scholar]
  5. Basu A., Dixit S. S., Phale P. S. ( 2003). Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86. Appl Microbiol Biotechnol 62:579–585 [View Article][PubMed]
    [Google Scholar]
  6. Basu A., Apte S. K., Phale P. S. ( 2006). Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl Environ Microbiol 72:2226–2230 [View Article][PubMed]
    [Google Scholar]
  7. Basu A., Shrivastava R., Basu B., Apte S. K., Phale P. S. ( 2007). Modulation of glucose transport causes preferential utilization of aromatic compounds in Pseudomonas putida CSV86. J Bacteriol 189:7556–7562 [View Article][PubMed]
    [Google Scholar]
  8. Benz R., Schmid A., Vos-Scheperkeuter G. H. ( 1987). Mechanism of sugar transport through the sugar-specific LamB channel of Escherichia coli outer membrane. J Membr Biol 100:21–29 [View Article][PubMed]
    [Google Scholar]
  9. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  10. Chen J., Sharma S., Quiocho F. A., Davidson A. L. ( 2001). Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport. Proc Natl Acad Sci U S A 98:1525–1530 [View Article][PubMed]
    [Google Scholar]
  11. Collier D. N., Hager P. W., Phibbs P. V. Jr ( 1996). Catabolite repression control in the Pseudomonads. Res Microbiol 147:551–561 [View Article][PubMed]
    [Google Scholar]
  12. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. ( 1992). Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733 [View Article][PubMed]
    [Google Scholar]
  13. Daddaoua A., Krell T., Ramos J. L. ( 2009). Regulation of glucose metabolism in Pseudomonas: the phosphorylative branch and entner-doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J Biol Chem 284:21360–21368 [View Article][PubMed]
    [Google Scholar]
  14. del Castillo T., Ramos J. L. ( 2007). Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 189:6602–6610 [View Article][PubMed]
    [Google Scholar]
  15. del Castillo T., Duque E., Ramos J. L. ( 2008). A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol 190:2331–2339 [View Article][PubMed]
    [Google Scholar]
  16. Duetz W. A., de Jong C., Williams P. A., van Andel J. G. ( 1994). Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene. Appl Environ Microbiol 60:2858–2863[PubMed]
    [Google Scholar]
  17. Haigler B. E., Pettigrew C. A., Spain J. C. ( 1992). Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Appl Environ Microbiol 58:2237–2244[PubMed]
    [Google Scholar]
  18. Hancock R. E., Benz R. ( 1986). Demonstration and chemical modification of a specific phosphate binding site in the phosphate-starvation-inducible outer membrane porin protein P of Pseudomonas aeruginosa . Biochim Biophys Acta 860:699–707 [View Article][PubMed]
    [Google Scholar]
  19. Hancock R. E., Brinkman F. S. ( 2002). Function of Pseudomonas porins in uptake and efflux. Annu Rev Microbiol 56:17–38 [View Article][PubMed]
    [Google Scholar]
  20. Hancock R. E., Carey A. M. ( 1980). Protein D1 – a glucose-inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa . FEMS Microbiol Lett 8:105–109
    [Google Scholar]
  21. Hancock R. E., Poole K., Benz R. ( 1982). Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes. J Bacteriol 150:730–738[PubMed]
    [Google Scholar]
  22. Higgins S. J., Mandelstam J. ( 1972). Regulation of pathways degrading aromatic substrates in Pseudomonas putida. Enzymic response to binary mixtures of substrates. Biochem J 126:901–916[PubMed]
    [Google Scholar]
  23. Higgins C. F., Hyde S. C., Mimmack M. M., Gileadi U., Gill D. R., Gallagher M. P. ( 1990). Binding protein-dependent transport systems. J Bioenerg Biomembr 22:571–592 [View Article][PubMed]
    [Google Scholar]
  24. Holtel A., Marqués S., Möhler I., Jakubzik U., Timmis K. N. ( 1994). Carbon source-dependent inhibition of xyl operon expression of the Pseudomonas putida TOL plasmid. J Bacteriol 176:1773–1776[PubMed]
    [Google Scholar]
  25. Joshi B., Schmid R., Altendorf K., Apte S. K. ( 2004). Protein recycling is a major component of post-irradiation recovery in Deinococcus radiodurans strain R1. Biochem Biophys Res Commun 320:1112–1117 [View Article][PubMed]
    [Google Scholar]
  26. Kim J., Yeom J., Jeon C. O., Park W. ( 2009). Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440. Microbiology 155:2420–2428 [View Article][PubMed]
    [Google Scholar]
  27. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  28. Mahajan M. C., Phale P. S., Vaidyanathan C. S. ( 1994). Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86. Arch Microbiol 161:425–433 [View Article][PubMed]
    [Google Scholar]
  29. McFall S. M., Abraham B., Narsolis C. G., Chakrabarty A. M. ( 1997). A tricarboxylic acid cycle intermediate regulating transcription of a chloroaromatic biodegradative pathway: fumarate-mediated repression of the clcABD operon. J Bacteriol 179:6729–6735[PubMed]
    [Google Scholar]
  30. Midgley M., Dawes E. A. ( 1973). The regulation of transport of glucose and methyl alpha-glucoside in Pseudomonas aeruginosa . Biochem J 132:141–154[PubMed]
    [Google Scholar]
  31. Montal M., Mueller P. ( 1972). Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A 69:3561–3566 [View Article][PubMed]
    [Google Scholar]
  32. Müller C., Petruschka L., Cuypers H., Burchhardt G., Herrmann H. ( 1996). Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J Bacteriol 178:2030–2036[PubMed]
    [Google Scholar]
  33. Nakajima A., Hoshikawa M., Nakae T. ( 1998). Antibiotic stress induces a large amount of outer membrane protein in Pseudomonas aeruginosa . FEMS Microbiol Lett 165:261–265 [View Article][PubMed]
    [Google Scholar]
  34. Nestorovich E. M., Sugawara E., Nikaido H., Bezrukov S. M. ( 2006). Pseudomonas aeruginosa porin OprF: properties of the channel. J Biol Chem 281:16230–16237 [View Article][PubMed]
    [Google Scholar]
  35. Ng F. M., Dawes E. A. ( 1973). Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate. Biochem J 132:129–140[PubMed]
    [Google Scholar]
  36. Nikaido H. ( 2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656 [View Article][PubMed]
    [Google Scholar]
  37. Nikaido H., Rosenberg E. Y. ( 1983). Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 153:241–252[PubMed]
    [Google Scholar]
  38. O’Farrell P. H. ( 1975). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021[PubMed]
    [Google Scholar]
  39. Phale P. S., Schirmer T., Prilipov A., Lou K. L., Hardmeyer A., Rosenbusch J. P. ( 1997). Voltage gating of Escherichia coli porin channels: role of the constriction loop. Proc Natl Acad Sci U S A 94:6741–6745 [View Article][PubMed]
    [Google Scholar]
  40. Saravolac E. G., Taylor N. F., Benz R., Hancock R. E. ( 1991). Purification of glucose-inducible outer membrane protein OprB of Pseudomonas putida and reconstitution of glucose-specific pores. J Bacteriol 173:4970–4976[PubMed]
    [Google Scholar]
  41. Schleissner C., Olivera E. R., Fernández-Valverde M., Luengo J. M. ( 1994). Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate. J Bacteriol 176:7667–7676[PubMed]
    [Google Scholar]
  42. Sly L. M., Worobec E. A., Perkins R. E., Phibbs P. V. Jr ( 1993). Reconstitution of glucose uptake and chemotaxis in Pseudomonas aeruginosa glucose transport defective mutants. Can J Microbiol 39:1079–1083 [View Article][PubMed]
    [Google Scholar]
  43. Stinson M. W., Cohen M. A., Merrick J. M. ( 1977). Purification and properties of the periplasmic glucose-binding protein of Pseudomonas aeruginosa . J Bacteriol 131:672–681[PubMed]
    [Google Scholar]
  44. Stülke J., Hillen W. ( 1999). Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201 [View Article][PubMed]
    [Google Scholar]
  45. Sugawara E., Nestorovich E. M., Bezrukov S. M., Nikaido H. ( 2006). Pseudomonas aeruginosa porin OprF exists in two different conformations. J Biol Chem 281:16220–16229 [View Article][PubMed]
    [Google Scholar]
  46. Sundara Baalaji N., Mathew M. K., Krishnaswamy S. ( 2006). Functional assay of Salmonella typhi OmpC using reconstituted large unilamellar vesicles: a general method for characterization of outer membrane proteins. Biochimie 88:1419–1424 [View Article][PubMed]
    [Google Scholar]
  47. Tiwari N. P., Campbell J. J. ( 1969). Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate media. Biochim Biophys Acta 192:395–401[PubMed] [CrossRef]
    [Google Scholar]
  48. Trias J., Nikaido H. ( 1990). Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J Biol Chem 265:15680–15684[PubMed]
    [Google Scholar]
  49. Trias J., Rosenberg E. Y., Nikaido H. ( 1988). Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa . Biochim Biophys Acta 938:493–496 [View Article][PubMed]
    [Google Scholar]
  50. Wylie J. L., Worobec E. A. ( 1993). Substrate specificity of the high-affinity glucose transport system of Pseudomonas aeruginosa . Can J Microbiol 39:722–725 [View Article][PubMed]
    [Google Scholar]
  51. Wylie J. L., Worobec E. A. ( 1994). Cloning and nucleotide sequence of the Pseudomonas aeruginosa glucose-selective OprB porin gene and distribution of OprB within the family Pseudomonadaceae . Eur J Biochem 220:505–512 [View Article][PubMed]
    [Google Scholar]
  52. Wylie J. L., Worobec E. A. ( 1995). The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa . J Bacteriol 177:3021–3026[PubMed]
    [Google Scholar]
  53. Wylie J. L., Bernegger-Egli C., O’Neil J. D., Worobec E. A. ( 1993). Biophysical characterization of OprB, a glucose-inducible porin of Pseudomonas aeruginosa . J Bioenerg Biomembr 25:547–556 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047191-0
Loading
/content/journal/micro/10.1099/mic.0.047191-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error