1887

Abstract

The non-domesticated strain 3610 displays, over a wide range of humidity, hyper-branched, dendritic, swarming-like migration on a minimal agar medium. At high (70 %) humidity, the laboratory strain 168 (producing surfactin) behaves very similarly, although this strain carries a frameshift mutation in , which another group has shown under their conditions (which include low humidity) is essential for swarming. We reconcile these different results by demonstrating that, while is essential for dendritic migration at low humidity (30–40 %), it is dispensable at high humidity. Dendritic migration (flagella- and surfactin-dependent) of strains 168 and 3610 involves elongation of dendrites for several hours as a monolayer of cells in a thin fluid film. This enabled us to determine the spatiotemporal pattern of expression of some key players in migration as dendrites develop, using transcriptional fusions for (encoding flagellin), (regulation of surfactin synthesis) as well as (exopolysaccharide synthesis). Quantitative (single-cell) analysis of expression revealed three spatially separated subpopulations or cell types: (i) networks of chains arising early in the mother colony (MC), expressing but not ; (ii) largely immobile cells in dendrite stems expressing intermediate levels of ; and (iii) a subpopulation of cells with several distinctive features, including very low expression but hyper-expression of (and flagella). These specialized cells emerge from the MC to spearhead the terminal 1 mm of dendrite tips as swirling and streaming packs, a major characteristic of swarming migration. We discuss a model for this swarming process, emphasizing the importance of population density and of the complementary roles of packs of swarmers driving dendrite extension, while non-mobile cells in the stems extend dendrites by multiplication.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047159-0
2011-09-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2456.html?itemId=/content/journal/micro/10.1099/mic.0.047159-0&mimeType=html&fmt=ahah

References

  1. Abramoff M. D., Magelhaes P. J., Ram S. J..( 2004;). Image processing with ImageJ. Biophotonics International11:36–42
    [Google Scholar]
  2. Antelmann H., Engelmann S., Schmid R., Sorokin A., Lapidus A., Hecker M..( 1997;). Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J Bacteriol179:7251–7256[PubMed]
    [Google Scholar]
  3. Aranson I. S., Sokolov A., Kessler J. O., Goldstein R. E..( 2007;). Model for dynamical coherence in thin films of self-propelled microorganisms. Phys Rev E Stat Nonlin Soft Matter Phys75:040901–1R [CrossRef][PubMed]
    [Google Scholar]
  4. Banaha M., Daerr A., Limat L..( 2009;). Spreading of liquid drops on agar gels. Eur Phys J Spec Top166:185–188 [CrossRef]
    [Google Scholar]
  5. Bisset K. A..( 1973;). The zonation phenomenon and structure of the swarm colony in Proteus mirabilis. J Med Microbiol6:429–433 [CrossRef][PubMed]
    [Google Scholar]
  6. Blair K. M., Turner L., Winkelman J. T., Berg H. C., Kearns D. B..( 2008;). A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science320:1636–1638 [CrossRef][PubMed]
    [Google Scholar]
  7. Branda S. S., González-Pastor J. E., Ben-Yehuda S., Losick R., Kolter R..( 2001;). Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A98:11621–11626 [CrossRef][PubMed]
    [Google Scholar]
  8. Caiazza N. C., Shanks R. M., O’Toole G. A..( 2005;). Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol187:7351–7361 [CrossRef][PubMed]
    [Google Scholar]
  9. Chai Y., Kolter R., Losick R..( 2009;). Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis. Mol Microbiol74:876–887 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen R., Guttenplan S. B., Blair K. M., Kearns D. B..( 2009;). Role of the σD-dependent autolysins in Bacillus subtilis population heterogeneity. J Bacteriol191:5775–5784 [CrossRef][PubMed]
    [Google Scholar]
  11. Chu F., Kearns D. B., Branda S. S., Kolter R., Losick R..( 2006;). Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol59:1216–1228 [CrossRef][PubMed]
    [Google Scholar]
  12. Chu F., Kearns D. B., McLoon A., Chai Y., Kolter R., Losick R..( 2008;). A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol Microbiol68:1117–1127 [CrossRef][PubMed]
    [Google Scholar]
  13. Copeland M. F., Flickinger S. T., Tuson H. H., Weibel D. B..( 2010;). Studying the dynamics of flagella in multicellular communities of Escherichia coli by using biarsenical dyes. Appl Environ Microbiol76:1241–1250 [CrossRef][PubMed]
    [Google Scholar]
  14. Cozy L. M., Kearns D. B..( 2010;). Gene position in a long operon governs motility development in Bacillus subtilis. Mol Microbiol76:273–285 [CrossRef][PubMed]
    [Google Scholar]
  15. Darnton N. C., Turner L., Rojevsky S., Berg H. C..( 2010;). Dynamics of bacterial swarming. Biophys J98:2082–2090 [CrossRef][PubMed]
    [Google Scholar]
  16. Debois D., Hamze K., Guérineau V., Le Caër J. P., Holland I. B., Lopes P., Ouazzani J., Séror S. J., Brunelle A., Laprévote O..( 2008;). In situ localisation and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry. Proteomics8:3682–3691 [CrossRef][PubMed]
    [Google Scholar]
  17. Eberl L., Molin S., Givskov M..( 1999;). Surface motility of Serratia liquefaciens MG1. J Bacteriol181:1703–1712[PubMed]
    [Google Scholar]
  18. Fraser G. M., Hughes C..( 1999;). Swarming motility. Curr Opin Microbiol2:630–635 [CrossRef][PubMed]
    [Google Scholar]
  19. Guérout-Fleury A. M., Frandsen N., Stragier P..( 1996;). Plasmids for ectopic integration in Bacillus subtilis. Gene180:57–61 [CrossRef][PubMed]
    [Google Scholar]
  20. Hamze K., Julkowska D., Autret S., Hinc K., Nagorska K., Sekowska A., Holland I. B., Séror S. J..( 2009;). Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC. Microbiology155:398–412 [CrossRef][PubMed]
    [Google Scholar]
  21. Harshey R. M..( 2003;). Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol57:249–273 [CrossRef][PubMed]
    [Google Scholar]
  22. Henrichsen J..( 1972;). Bacterial surface translocation: a survey and a classification. Bacteriol Rev36:478–503[PubMed]
    [Google Scholar]
  23. Julkowska D., Obuchowski M., Holland I. B., Séror S. J..( 2004;). Branched swarming patterns on a synthetic medium formed by wild-type Bacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops. Microbiology150:1839–1849 [CrossRef][PubMed]
    [Google Scholar]
  24. Julkowska D., Obuchowski M., Holland I. B., Séror S. J..( 2005;). Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol187:65–76 [CrossRef][PubMed]
    [Google Scholar]
  25. Kearns D. B., Losick R..( 2003;). Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol49:581–590 [CrossRef][PubMed]
    [Google Scholar]
  26. Kearns D. B., Losick R..( 2005;). Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev19:3083–3094 [CrossRef][PubMed]
    [Google Scholar]
  27. Kearns D. B., Chu F., Rudner R., Losick R..( 2004;). Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol52:357–369 [CrossRef][PubMed]
    [Google Scholar]
  28. Kearns D. B., Chu F., Branda S. S., Kolter R., Losick R..( 2005;). A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol55:739–749 [CrossRef][PubMed]
    [Google Scholar]
  29. Kobayashi K..( 2007;). Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J Bacteriol189:4920–4931 [CrossRef][PubMed]
    [Google Scholar]
  30. Kobayashi K..( 2008;). SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis. Mol Microbiol69:1399–1410 [CrossRef][PubMed]
    [Google Scholar]
  31. Leclère V., Marti R., Béchet M., Fickers P., Jacques P..( 2006;). The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol186:475–483 [CrossRef][PubMed]
    [Google Scholar]
  32. Lemon K. P., Earl A. M., Vlamakis H. C., Aguilar C., Kolter R..( 2008;). Biofilm development with an emphasis on Bacillus subtilis. Curr Top Microbiol Immunol322:1–16 [CrossRef][PubMed]
    [Google Scholar]
  33. López D., Kolter R..( 2010;). Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev34:134–149 [CrossRef][PubMed]
    [Google Scholar]
  34. Lynch D., O’Brien J., Welch T., Clarke P., Cuív P. O., Crosa J. H., O’Connell M..( 2001;). Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol183:2576–2585 [CrossRef][PubMed]
    [Google Scholar]
  35. Marrocco A., Henry H., Holland I. B., Plapp M., Séror S. J., Perthame B..( 2010;). Models of self-organizing bacterial communities and comparisons with experimental observations. Math Model Nat Phenom5:148–162 [CrossRef]
    [Google Scholar]
  36. McCarter L. L..( 2010;). Bacterial acrobatics on a surface: swirling packs, collisions, and reversals during swarming. J Bacteriol192:3246–3248 [CrossRef][PubMed]
    [Google Scholar]
  37. Nakano M. M., Corbell N., Besson J., Zuber P..( 1992;). Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet232:313–321[PubMed]
    [Google Scholar]
  38. Patrick J. E., Kearns D. B..( 2009;). Laboratory strains of Bacillus subtilis do not exhibit swarming motility. J Bacteriol191:7129–7133 [CrossRef][PubMed]
    [Google Scholar]
  39. Rashid M. H., Kornberg A..( 2000;). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A97:4885–4890 [CrossRef][PubMed]
    [Google Scholar]
  40. Rauprich O., Matsushita M., Weijer C. J., Siegert F., Esipov S. E., Shapiro J. A..( 1996;). Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol178:6525–6538[PubMed]
    [Google Scholar]
  41. Sokolov A., Aranson I. S., Kessler J. O., Goldstein R. E..( 2007;). Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett98:158102–158106 [CrossRef][PubMed]
    [Google Scholar]
  42. Turner L., Zhang R., Darnton N. C., Berg H. C..( 2010;). Visualization of flagella during bacterial swarming. J Bacteriol192:3259–3267 [CrossRef][PubMed]
    [Google Scholar]
  43. Tuval I., Cisneros L., Dombrowski C., Wolgemuth C. W., Kessler J. O., Goldstein R. E..( 2005;). Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci U S A102:2277–2282 [CrossRef][PubMed]
    [Google Scholar]
  44. Vlamakis H., Aguilar C., Losick R., Kolter R..( 2008;). Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev22:945–953 [CrossRef][PubMed]
    [Google Scholar]
  45. Zhang R., Turner L., Berg H. C..( 2010;). The upper surface of an Escherichia coli swarm is stationary. Proc Natl Acad Sci U S A107:288–290 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047159-0
Loading
/content/journal/micro/10.1099/mic.0.047159-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error