1887

Abstract

FlgD of is a 232 aa protein that acts as the hook cap to promote assembly of FlgE into the hook structure. The N-terminal 86 residues (FlgD) complement mutants, albeit to a small degree. However, little is known about the role of the C-terminal region of FlgD (FlgD). Here we isolated pseudorevertants from mutants. About half of the extragenic mutations lay within FlgD and only one in FlgD. These suppressor mutations prevented mutant FlgE subunits from leaking out to some degree. Two weakly motile mutants encoding C-terminally truncated variants, FlgD and FlgD, secreted larger amounts of FlgE into the culture medium than wild-type cells. Their hooks were shorter, and their length distributions were broader, with significant tailing towards smaller values. These results suggest that FlgD contributes to efficient hook polymerization. Therefore, we propose that FlgD attaches to the distal end of the hook to promote hook polymerization and that FlgD blocks the exit of newly exported FlgE monomers into the culture medium, allowing FlgE to have more time to assemble into the hook.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047100-0
2011-05-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1354.html?itemId=/content/journal/micro/10.1099/mic.0.047100-0&mimeType=html&fmt=ahah

References

  1. Aizawa S.-I., Dean G. E., Jones C. J., Macnab R. M., Yamaguchi S.. ( 1985;). Purification and characterization of the flagellar hook-basal body complex of Salmonella typhimurium . J Bacteriol161:836–849[PubMed]
    [Google Scholar]
  2. Erhardt M., Hirano T., Su Y., Paul K., Wee D. H., Mizuno S., Aizawa S.-I., Hughes K. T.. ( 2010;). The role of the FliK molecular ruler in hook-length control in Salmonella enterica . Mol Microbiol75:1272–1284 [CrossRef][PubMed]
    [Google Scholar]
  3. Fujii T., Kato T., Namba K.. ( 2009;). Specific arrangement of α-helical coiled coils in the core domain of the bacterial flagellar hook for the universal joint function. Structure17:1485–1493 [CrossRef][PubMed]
    [Google Scholar]
  4. Hirano T., Yamaguchi S., Oosawa K., Aizawa S.-I.. ( 1994;). Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium . J Bacteriol176:5439–5449[PubMed]
    [Google Scholar]
  5. Hirano T., Minamino T., Macnab R. M.. ( 2001;). The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. J Mol Biol312:359–369 [CrossRef][PubMed]
    [Google Scholar]
  6. Hirano T., Minamino T., Namba K., Macnab R. M.. ( 2003;). Substrate specificity classes and the recognition signal for Salmonella type III flagellar export. J Bacteriol185:2485–2492 [CrossRef][PubMed]
    [Google Scholar]
  7. Ikeda T., Asakura S., Kamiya R.. ( 1985;). “Cap” on the tip of Salmonella flagella. J Mol Biol184:735–737 [CrossRef][PubMed]
    [Google Scholar]
  8. Kato S., Aizawa S.-I., Asakura S.. ( 1982;). Reconstruction in vitro of the flagellar polyhook from Salmonella . J Mol Biol161:551–560 [CrossRef][PubMed]
    [Google Scholar]
  9. Kubori T., Shimamoto N., Yamaguchi S., Namba K., Aizawa S.-I.. ( 1992;). Morphological pathway of flagellar assembly in Salmonella typhimurium . J Mol Biol226:433–446 [CrossRef][PubMed]
    [Google Scholar]
  10. Kuo W. T., Chin K. H., Lo W. T., Wang A. H., Chou S. H.. ( 2008;). Crystal structure of the C-terminal domain of a flagellar hook-capping protein from Xanthomonas campestris . J Mol Biol381:189–199 [CrossRef][PubMed]
    [Google Scholar]
  11. Kutsukake K., Doi H.. ( 1994;). Nucleotide sequence of the flgD gene of Salmonella typhimurium which is essential for flagellar hook formation. Biochim Biophys Acta1218:443–446[PubMed][CrossRef]
    [Google Scholar]
  12. Luo M., Niu S., Yin Y., Huang A., Wang D.. ( 2009;). Cloning, purification, crystallization and preliminary X-ray studies of flagellar hook scaffolding protein FlgD from Pseudomonas aeruginosa PAO1. Acta Crystallogr Sect F Struct Biol Cryst Commun65:795–797 [CrossRef][PubMed]
    [Google Scholar]
  13. Macnab R. M.. ( 2003;). How bacteria assemble flagella. Annu Rev Microbiol57:77–100 [CrossRef][PubMed]
    [Google Scholar]
  14. Minamino T., Macnab R. M.. ( 1999;). Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol181:1388–1394[PubMed]
    [Google Scholar]
  15. Minamino T., Macnab R. M.. ( 2000;). Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J Bacteriol182:4906–4914 [CrossRef][PubMed]
    [Google Scholar]
  16. Minamino T., Namba K.. ( 2004;). Self-assembly and type III protein export of the bacterial flagellum. J Mol Microbiol Biotechnol7:5–17 [CrossRef][PubMed]
    [Google Scholar]
  17. Minamino T., González-Pedrajo B., Yamaguchi K., Aizawa S.-I., Macnab R. M.. ( 1999;). FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol Microbiol34:295–304 [CrossRef][PubMed]
    [Google Scholar]
  18. Minamino T., Imada K., Namba K.. ( 2008;). Mechanisms of type III protein export for bacterial flagellar assembly. Mol Biosyst4:1105–1115 [CrossRef][PubMed]
    [Google Scholar]
  19. Minamino T., Moriya N., Hirano T., Hughes K. T., Namba K.. ( 2009;). Interaction of FliK with the bacterial flagellar hook is required for efficient export specificity switching. Mol Microbiol74:239–251 [CrossRef][PubMed]
    [Google Scholar]
  20. Moriya N., Minamino T., Hughes K. T., Macnab R. M., Namba K.. ( 2006;). The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock. J Mol Biol359:466–477 [CrossRef][PubMed]
    [Google Scholar]
  21. Muramoto K., Makishima S., Aizawa S.-I., Macnab R. M.. ( 1999;). Effect of hook subunit concentration on assembly and control of length of the flagellar hook of Salmonella . J Bacteriol181:5808–5813[PubMed]
    [Google Scholar]
  22. Ohnishi K., Ohto Y., Aizawa S.-I., Macnab R. M., Iino T.. ( 1994;). FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium . J Bacteriol176:2272–2281[PubMed]
    [Google Scholar]
  23. Saijo-Hamano Y., Minamino T., Macnab R. M., Namba K.. ( 2004;). Structural and functional analysis of the C-terminal cytoplasmic domain of FlhA, an integral membrane component of the type III flagellar protein export apparatus in Salmonella . J Mol Biol343:457–466 [CrossRef][PubMed]
    [Google Scholar]
  24. Samatey F. A., Matsunami H., Imada K., Nagashima S., Shaikh T. R., Thomas D. R., Chen J. Z., Derosier D. J., Kitao A., Namba K.. ( 2004;). Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature431:1062–1068 [CrossRef][PubMed]
    [Google Scholar]
  25. Yamaguchi S., Fujita H., Sugata K., Taira T., Iino T.. ( 1984;). Genetic analysis of H2, the structural gene for phase-2 flagellin in Salmonella . J Gen Microbiol130:255–265[PubMed]
    [Google Scholar]
  26. Yonekura K., Maki S., Morgan D. G., DeRosier D. J., Vonderviszt F., Imada K., Namba K.. ( 2000;). The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science290:2148–2152 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047100-0
Loading
/content/journal/micro/10.1099/mic.0.047100-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error