1887

Abstract

, the meningococcus, is naturally competent for transformation throughout its growth cycle. The uptake of exogenous DNA into the meningococcus cell during transformation is a multi-step process. Beyond the requirement for type IV pilus expression for efficient transformation, little is known about the neisserial proteins involved in DNA binding, uptake and genome integration. This study aimed to identify and characterize neisserial DNA binding proteins in order to further elucidate the multi-factorial transformation machinery. The meningococcus inner membrane and soluble cell fractions were searched for DNA binding components by employing 1D and 2D gel electrophoresis approaches in combination with a solid-phase overlay assay with DNA substrates. Proteins that bound DNA were identified by MS analysis. In the membrane fraction, multiple components bound DNA, including the neisserial competence lipoprotein ComL. In the soluble fraction, the meningococcus orthologue of the single-stranded DNA binding protein SSB was predominant. The DNA binding activity of the recombinant ComL and SSB proteins purified to homogeneity was verified by electromobility shift assay, and the ComL–DNA interaction was shown to be Mg-dependent. In 3D models of the meningococcus ComL and SSB predicted structures, potential DNA binding sites were suggested. ComL was found to co-purify with the outer membrane, directly interacting with the secretin PilQ. The combined use of 1D/2D solid-phase overlay assays with MS analysis was a useful strategy for identifying DNA binding components. The ComL DNA binding properties and outer membrane localization suggest that this lipoprotein plays a direct role in neisserial transformation, while neisserial SSB is a DNA binding protein that contributes to the terminal part of the transformation process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046896-0
2011-05-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1329.html?itemId=/content/journal/micro/10.1099/mic.0.046896-0&mimeType=html&fmt=ahah

References

  1. Ambur O. H., Frye S. A., Tønjum T..( 2007;). New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol189:2077–2085 [CrossRef][PubMed]
    [Google Scholar]
  2. Ames G. F., Prody C., Kustu S..( 1984;). Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol160:1181–1183[PubMed]
    [Google Scholar]
  3. Arnold K., Bordoli L., Kopp J., Schwede T..( 2006;). The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics22:195–201 [CrossRef][PubMed]
    [Google Scholar]
  4. Assalkhou R., Balasingham S., Collins R. F., Frye S. A., Davidsen T., Benam A. V., Bjørås M., Derrick J. P., Tønjum T..( 2007;). The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology153:1593–1603 [CrossRef][PubMed]
    [Google Scholar]
  5. Averhoff B..( 2004;). DNA transport and natural transformation in mesophilic and thermophilic bacteria. J Bioenerg Biomembr36:25–33 [CrossRef][PubMed]
    [Google Scholar]
  6. Babu M. M., Priya M. L., Selvan A. T., Madera M., Gough J., Aravind L., Sankaran K..( 2006;). A database of bacterial lipoproteins (dolop) with functional assignments to predicted lipoproteins. J Bacteriol188:2761–2773 [CrossRef][PubMed]
    [Google Scholar]
  7. Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A..( 2001;). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A98:10037–10041 [CrossRef][PubMed]
    [Google Scholar]
  8. Balasingham S. V., Collins R. F., Assalkhou R., Homberset H., Frye S. A., Derrick J. P., Tønjum T..( 2007;). Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis. J Bacteriol189:5716–5727 [CrossRef][PubMed]
    [Google Scholar]
  9. Bateman A., Coin L., Durbin R., Finn R. D., Hollich V., Griffiths-Jones S., Khanna A., Marshall M., Moxon S. et al.( 2004;). The Pfam protein families database. Nucleic Acids Res32:Database issueD138–D141 [CrossRef][PubMed]
    [Google Scholar]
  10. Bennett-Lovsey R. M., Herbert A. D., Sternberg M. J., Kelley L. A..( 2008;). Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins70:611–625 [CrossRef][PubMed]
    [Google Scholar]
  11. Boeckmann B., Bairoch A., Apweiler R., Blatter M. C., Estreicher A., Gasteiger E., Martin M. J., Michoud K., O’Donovan C. et al.( 2003;). The swiss-prot protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res31:365–370 [CrossRef][PubMed]
    [Google Scholar]
  12. Bradley D. E..( 1980;). A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol26:146–154 [CrossRef][PubMed]
    [Google Scholar]
  13. Buratowski S., Chodosh L. A..( 1996;). Mobility shift DNA-binding assay using gel electrophoresis. In Current Protocols in Molecular Biology Chapter 1212.2.1–12.2.11Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley.;
    [Google Scholar]
  14. Carbonnelle E., Hélaine S., Prouvensier L., Nassif X., Pelicic V..( 2005;). Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol55:54–64 [CrossRef][PubMed]
    [Google Scholar]
  15. Caugant D. A..( 2008;). Genetics and evolution of Neisseria meningitidis: importance for the epidemiology of meningococcal disease. Infect Genet Evol8:558–565 [CrossRef][PubMed]
    [Google Scholar]
  16. Chen I., Gotschlich E. C..( 2001;). ComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity. J Bacteriol183:3160–3168 [CrossRef][PubMed]
    [Google Scholar]
  17. Cuff J. A., Clamp M. E., Siddiqui A. S., Finlay M., Barton G. J..( 1998;). JPred: a consensus secondary structure prediction server. Bioinformatics14:892–893 [CrossRef][PubMed]
    [Google Scholar]
  18. D'Andrea L. D., Regan L..( 2003;). TPR proteins: the versatile helix. Trends Biochem Sci28:655–662 [CrossRef][PubMed]
    [Google Scholar]
  19. Davidsen T., Tønjum T..( 2006;). Meningococcal genome dynamics. Nat Rev Microbiol4:11–22 [CrossRef][PubMed]
    [Google Scholar]
  20. Davidsen T., Rødland E. A., Lagesen K., Seeberg E., Rognes T., Tønjum T..( 2004;). Biased distribution of DNA uptake sequences towards genome maintenance genes. Nucleic Acids Res32:1050–1058 [CrossRef][PubMed]
    [Google Scholar]
  21. DeLano W. L.. 2002; The PyMOL Molecular Graphics System. San Carlos, CA: DeLano Scientific LLC; http://www.pymol.org
  22. Facius D., Meyer T. F.. ( 1993;). A novel determinant (comA) essential for natural transformation competence in Neisseria gonorrhoeae and the effect of a comA defect on pilin variation. Mol Microbiol10:699–712 [CrossRef][PubMed]
    [Google Scholar]
  23. Fanning E., Klimovich V., Nager A. R.. ( 2006;). A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res34:4126–4137 [CrossRef][PubMed]
    [Google Scholar]
  24. Fedorov R., Witte G., Urbanke C., Manstein D. J., Curth U.. ( 2006;). 3D structure of Thermus aquaticus single-stranded DNA-binding protein gives insight into the functioning of SSB proteins. Nucleic Acids Res34:6708–6717 [CrossRef][PubMed]
    [Google Scholar]
  25. Fleckenstein B., Qiao S. W., Larsen M. R., Jung G., Roepstorff P., Sollid L. M.. ( 2004;). Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem279:17607–17616 [CrossRef][PubMed]
    [Google Scholar]
  26. Frøholm L. O., Jyssum K., Bøvre K.. ( 1973;). Electron microscopical and cultural features of Neisseria meningitidis competence variants. Acta Pathol Microbiol Scand B Microbiol Immunol81:525–537[PubMed]
    [Google Scholar]
  27. Frye S. A., Assalkhou R., Collins R. F., Ford R. C., Petersson C., Derrick J. P., Tønjum T.. ( 2006;). Topology of the outer-membrane secretin PilQ from Neisseria meningitidis. Microbiology152:3751–3764 [CrossRef][PubMed]
    [Google Scholar]
  28. Fussenegger M., Facius D., Meier J., Meyer T. F.. ( 1996;). A novel peptidoglycan-linked lipoprotein (ComL) that functions in natural transformation competence of Neisseria gonorrhoeae. Mol Microbiol19:1095–1105 [CrossRef][PubMed]
    [Google Scholar]
  29. Fussenegger M., Rudel T., Barten R., Ryll R., Meyer T. F.. ( 1997;). Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae – a review. Gene192:125–134 [CrossRef][PubMed]
    [Google Scholar]
  30. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., Bairoch A.. ( 2005;). Protein identification and analysis tools on the ExPASY server. In The Proteomics Protocols Handbook pp571–607Edited by Walker J. M.. Totowa, NJ: Humana Press; [CrossRef]
    [Google Scholar]
  31. Goodman S. D., Scocca J. J.. ( 1988;). Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A85:6982–6986 [CrossRef][PubMed]
    [Google Scholar]
  32. Hulo N., Sigrist C. J., Le Saux V., Langendijk-Genevaux P. S., Bordoli L., Gattiker A., De Castro E., Bucher P., Bairoch A.. ( 2004;). Recent improvements to the prosite database. Nucleic Acids Res32:Database issueD134–D137 [CrossRef][PubMed]
    [Google Scholar]
  33. Hwang S., Gou Z., Kuznetsov I. B.. ( 2007;). DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics23:634–636 [CrossRef][PubMed]
    [Google Scholar]
  34. Jones D. T., Taylor W. R., Thornton J. M.. ( 1994;). A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry33:3038–3049 [CrossRef][PubMed]
    [Google Scholar]
  35. Jose J., Otto G. W., Meyer T. F.. ( 2003;). The integration site of the iga gene in commensal Neisseria sp. Mol Genet Genomics269:197–204[PubMed]
    [Google Scholar]
  36. Judd R. C., Porcella S. F.. ( 1993;). Isolation of the periplasm of Neisseria gonorrhoeae. Mol Microbiol10:567–574 [CrossRef][PubMed]
    [Google Scholar]
  37. Jyssum K., Lie S.. ( 1965;). Genetic factors determining competence in transformation of Neisseria meningitidis. 1. A permanent loss of competence. Acta Pathol Microbiol Scand63:306–316[PubMed]
    [Google Scholar]
  38. Kim K., Oh J., Han D., Kim E. E., Lee B., Kim Y.. ( 2006;). Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Biochem Biophys Res Commun340:1028–1038 [CrossRef][PubMed]
    [Google Scholar]
  39. Knowles T. J., Scott-Tucker A., Overduin M., Henderson I. R.. ( 2009;). Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol7:206–214 [CrossRef][PubMed]
    [Google Scholar]
  40. Koo J., Tammam S., Ku S. Y., Sampaleanu L. M., Burrows L. L., Howell P. L.. ( 2008;). PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa Type IV pilus secretin. J Bacteriol190:6961–6969 [CrossRef][PubMed]
    [Google Scholar]
  41. Koomey J. M., Falkow S.. ( 1987;). Cloning of the recA gene of Neisseria gonorrhoeae and construction of gonococcal recA mutants. J Bacteriol169:790–795[PubMed]
    [Google Scholar]
  42. Lång E., Haugen K., Fleckenstein B., Homberset H., Frye S. A., Ambur O. H., Tønjum T.. ( 2009;). Identification of neisserial DNA binding components. Microbiology155:852–862 [CrossRef][PubMed]
    [Google Scholar]
  43. Lindner C., Nijland R., van Hartskamp M., Bron S., Hamoen L. W., Kuipers O. P.. ( 2004;). Differential expression of two paralogous genes of Bacillus subtilis encoding single-stranded DNA binding protein. J Bacteriol186:1097–1105 [CrossRef][PubMed]
    [Google Scholar]
  44. Makhov A. M., Griffith J. D.. ( 2006;). Visualization of the annealing of complementary single-stranded DNA catalyzed by the herpes simplex virus type 1 ICP8 SSB/recombinase. J Mol Biol355:911–922 [CrossRef][PubMed]
    [Google Scholar]
  45. Makhov A. M., Sen A., Yu X., Simon M. N., Griffith J. D., Egelman E. H.. ( 2009;). The bipolar filaments formed by herpes simplex virus type 1 SSB/recombination protein (ICP8) suggest a mechanism for DNA annealing. J Mol Biol386:273–279 [CrossRef][PubMed]
    [Google Scholar]
  46. Malinverni J. C., Werner J., Kim S., Sklar J. G., Kahne D., Misra R., Silhavy T. J.. ( 2006;). YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol61:151–164 [CrossRef][PubMed]
    [Google Scholar]
  47. Maniatis T., Fritsch E. F., Sambrook J.. ( 1982;). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Mapelli M., Panjikar S., Tucker P. A.. ( 2005;). The crystal structure of the herpes simplex virus 1 ssDNA-binding protein suggests the structural basis for flexible, cooperative single-stranded DNA binding. J Biol Chem280:2990–2997 [CrossRef][PubMed]
    [Google Scholar]
  49. Masson L., Holbein B. E.. ( 1983;). Physiology of sialic acid capsular polysaccharide synthesis in serogroup B Neisseria meningitidis. J Bacteriol154:728–736[PubMed]
    [Google Scholar]
  50. Monaco C., Talà A., Spinosa M. R., Progida C., De Nitto E., Gaballo A., Bruni C. B., Bucci C., Alifano P.. ( 2006;). Identification of a meningococcal l-glutamate ABC transporter operon essential for growth in low-sodium environments. Infect Immun74:1725–1740 [CrossRef][PubMed]
    [Google Scholar]
  51. Obradovic Z., Peng K., Vucetic S., Radivojac P., Dunker A. K.. ( 2005;). Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins61 :Suppl. 7176–182 [CrossRef][PubMed]
    [Google Scholar]
  52. Ogura M., Yamaguchi H., Kobayashi K., Ogasawara N., Fujita Y., Tanaka T.. ( 2002;). Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol184:2344–2351 [CrossRef][PubMed]
    [Google Scholar]
  53. Raghunathan S., Kozlov A. G., Lohman T. M., Waksman G.. ( 2000;). Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol7:648–652 [CrossRef][PubMed]
    [Google Scholar]
  54. Redfield R. J., Cameron A. D., Qian Q., Hinds J., Ali T. R., Kroll J. S., Langford P. R.. ( 2005;). A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J Mol Biol347:735–747 [CrossRef][PubMed]
    [Google Scholar]
  55. Rice P., Longden I., Bleasby A.. ( 2000;). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  56. Sanner M. F.. ( 1999;). Python: a programming language for software integration and development. J Mol Graph Model17:57–61[PubMed]
    [Google Scholar]
  57. Savvides S. N., Raghunathan S., Fütterer K., Kozlov A. G., Lohman T. M., Waksman G.. ( 2004;). The C-terminal domain of full-length E. coli SSB is disordered even when bound to DNA. Protein Sci13:1942–1947 [CrossRef][PubMed]
    [Google Scholar]
  58. Shereda R. D., Kozlov A. G., Lohman T. M., Cox M. M., Keck J. L.. ( 2008;). SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol43:289–318 [CrossRef][PubMed]
    [Google Scholar]
  59. Stephens D. S., Greenwood B., Brandtzaeg P.. ( 2007;). Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet369:2196–2210 [CrossRef][PubMed]
    [Google Scholar]
  60. Swanson J., Kraus S. J., Gotschlich E. C.. ( 1971;). Studies on gonococcus infection. I. Pili and zones of adhesion: their relation to gonococcal growth patterns. J Exp Med134:886–906 [CrossRef][PubMed]
    [Google Scholar]
  61. Tibballs K. L., Ambur O. H., Alfsnes K., Homberset H., Frye S. A., Davidsen T., Tønjum T.. ( 2009;). Characterization of the meningococcal DNA glycosylase Fpg involved in base excision repair. BMC Microbiol9:7 [CrossRef][PubMed]
    [Google Scholar]
  62. Tønjum T., Koomey M.. ( 1997;). The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships – a review. Gene192:155–163 [CrossRef][PubMed]
    [Google Scholar]
  63. Tønjum T., Freitag N. E., Namork E., Koomey M.. ( 1995;). Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria. Mol Microbiol16:451–464 [CrossRef][PubMed]
    [Google Scholar]
  64. Tønjum T., Caugant D. A., Dunham S. A., Koomey M.. ( 1998;). Structure and function of repetitive sequence elements associated with a highly polymorphic domain of the Neisseria meningitidis PilQ protein. Mol Microbiol29:111–124 [CrossRef][PubMed]
    [Google Scholar]
  65. Trindade M. B., Job V., Contreras-Martel C., Pelicic V., Dessen A.. ( 2008;). Structure of a widely conserved type IV pilus biogenesis factor that affects the stability of secretin multimers. J Mol Biol378:1031–1039 [CrossRef][PubMed]
    [Google Scholar]
  66. Ward J. J., McGuffin L. J., Bryson K., Buxton B. F., Jones D. T.. ( 2004;). The DISOPRED server for the prediction of protein disorder. Bioinformatics20:2138–2139 [CrossRef][PubMed]
    [Google Scholar]
  67. Wolfgang M., van Putten J. P., Hayes S. F., Koomey M.. ( 1999;). The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol Microbiol31:1345–1357 [CrossRef][PubMed]
    [Google Scholar]
  68. Wu T., Malinverni J., Ruiz N., Kim S., Silhavy T. J., Kahne D.. ( 2005;). Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell121:235–245 [CrossRef][PubMed]
    [Google Scholar]
  69. Yazdankhah S. P., Kriz P., Tzanakaki G., Kremastinou J., Kalmusova J., Musilek M., Alvestad T., Jolley K. A., Wilson D. J. et al. ( 2004;). Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J Clin Microbiol42:5146–5153 [CrossRef][PubMed]
    [Google Scholar]
  70. Zou Y., Liu Y., Wu X., Shell S. M.. ( 2006;). Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol208:267–273 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046896-0
Loading
/content/journal/micro/10.1099/mic.0.046896-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error