1887

Abstract

coordinates its virulence expression and establishment in the host in response to modification of its environment. During the infectious process, bacteria are exposed to and can detect eukaryotic products including hormones. It has been shown that is sensitive to natriuretic peptides, a family of eukaryotic hormones, through a cyclic nucleotide-dependent sensor system that modulates its cytotoxicity. We observed that pre-treatment of PAO1 with C-type natriuretic peptide (CNP) increases the capacity of the bacteria to kill through diffusive toxin production. In contrast, brain natriuretic peptide (BNP) did not affect the capacity of the bacteria to kill . The bacterial production of hydrogen cyanide (HCN) was enhanced by both BNP and CNP whereas the production of phenazine pyocyanin was strongly inhibited by CNP. The amount of 2-heptyl-4-quinolone (HHQ), a precursor to 2-heptyl-3-hydroxyl-4-quinolone ( quinolone signal; PQS), decreased after CNP treatment. The quantity of 2-nonyl-4-quinolone (HNQ), another quinolone which is synthesized from HHQ, was also reduced after CNP treatment. Conversely, both BNP and CNP significantly enhanced bacterial production of acylhomoserine lactone (AHL) [e.g. 3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) and butanoylhomoserine lactone (C4-HSL)]. These results correlate with an induction of transcription 1 h after bacterial exposure to BNP or CNP. Concurrently, pre-treatment of PAO1 with either BNP or CNP enhanced PAO1 exotoxin A production, via a higher mRNA level. At the same time, CNP led to elevated amounts of mRNA, indicating that is involved in killing. Finally, we observed that in PAO1, Vfr protein is essential to the pro-virulent effect of CNP whereas the regulator PtxR supports only a part of the CNP pro-virulent activity. Taken together, these data reinforce the hypothesis that during infection natriuretic peptides, particularly CNP, could enhance the virulence of PAO1. This activity is relayed by Vfr and PtxR activation, and a general diagram of the virulence activation cascade involving AHL, HCN and exotoxin A is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046755-0
2011-07-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/1929.html?itemId=/content/journal/micro/10.1099/mic.0.046755-0&mimeType=html&fmt=ahah

References

  1. Aballay A., Drenkard E., Hilbun L. R., Ausubel F. M.. ( 2003;). Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway. Curr Biol13:47–52 [CrossRef][PubMed]
    [Google Scholar]
  2. Adams C., Morris-Quinn M., McConnell F., West J., Lucey B., Shortt C., Cryan B., Watson J. B., O'Gara F.. ( 1998;). Epidemiology and clinical impact of Pseudomonas aeruginosa infection in cystic fibrosis using AP-PCR fingerprinting. J Infect37:151–158 [CrossRef][PubMed]
    [Google Scholar]
  3. Albus A. M., Pesci E. C., Runyen-Janecky L. J., West S. E., Iglewski B. H.. ( 1997;). Vfr controls quorum sensing in Pseudomonas aeruginosa . J Bacteriol179:3928–3935[PubMed]
    [Google Scholar]
  4. Anand-Srivastava M. B., Sehl P. D., Lowe D. G.. ( 1996;). Cytoplasmic domain of natriuretic peptide receptor-C inhibits adenylyl cyclase. Involvement of a pertussis toxin-sensitive G protein. J Biol Chem271:19324–19329 [CrossRef][PubMed]
    [Google Scholar]
  5. Anderson R. D., Roddam L. F., Bettiol S., Sanderson K., Reid D. W.. ( 2010;). Biosignificance of bacterial cyanogenesis in the CF lung. J Cyst Fibros9:158–164 [CrossRef][PubMed]
    [Google Scholar]
  6. Bazire A., Dheilly A., Diab F., Morin D., Jebbar M., Haras D., Dufour A.. ( 2005;). Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa . FEMS Microbiol Lett253:125–131 [CrossRef][PubMed]
    [Google Scholar]
  7. Bazire A., Diab F., Taupin L., Rodrigues S., Jebbar M., Dufour A.. ( 2009;). Effects of osmotic stress on rhamnolipid synthesis and time-course production of cell-to-cell signal molecules by Pseudomonas aeruginosa . Open Microbiol J3:128–135 [CrossRef][PubMed]
    [Google Scholar]
  8. Bazire A., Shioya K., Soum-Soutéra E., Bouffartigues E., Ryder C., Guentas-Dombrowsky L., Hémery G., Linossier I., Chevalier S. et al. ( 2010;). The sigma factor AlgU plays a key role in formation of robust biofilms by nonmucoid Pseudomonas aeruginosa . J Bacteriol192:3001–3010 [CrossRef][PubMed]
    [Google Scholar]
  9. Bomberger J. M., Maceachran D. P., Coutermarsh B. A., Ye S., O'Toole G. A., Stanton B. A.. ( 2009;). Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog5:e1000382 [CrossRef][PubMed]
    [Google Scholar]
  10. Bulet P., Stöcklin R., Menin L.. ( 2004;). Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev198:169–184 [CrossRef][PubMed]
    [Google Scholar]
  11. Camilli A., Bassler B. L.. ( 2006;). Bacterial small-molecule signaling pathways. Science311:1113–1116 [CrossRef][PubMed]
    [Google Scholar]
  12. Carty N. L., Layland N., Colmer-Hamood J. A., Calfee M. W., Pesci E. C., Hamood A. N.. ( 2006;). PtxR modulates the expression of QS-controlled virulence factors in the Pseudomonas aeruginosa strain PAO1. Mol Microbiol61:782–794 [CrossRef][PubMed]
    [Google Scholar]
  13. Chugani S. A., Whiteley M., Lee K. M., D'Argenio D., Manoil C., Greenberg E. P.. ( 2001;). QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A98:2752–2757 [CrossRef][PubMed]
    [Google Scholar]
  14. Coligan J. E., Kruisbeek A. M., Margulies D. H., Shevach E. M., Strober W.. ( 2001;). Current Protocols in Immunology Coico R.. New York: Wiley; [CrossRef]
    [Google Scholar]
  15. Corbella M. E., Puyet A.. ( 2003;). Real-time reverse transcription-PCR analysis of expression of halobenzoate and salicylate catabolism-associated operons in two strains of Pseudomonas aeruginosa . Appl Environ Microbiol69:2269–2275 [CrossRef][PubMed]
    [Google Scholar]
  16. Darby C., Cosma C. L., Thomas J. H., Manoil C.. ( 1999;). Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa . Proc Natl Acad Sci U S A96:15202–15207 [CrossRef][PubMed]
    [Google Scholar]
  17. Davinic M., Carty N. L., Colmer-Hamood J. A., San Francisco M., Hamood A. N.. ( 2009;). Role of Vfr in regulating exotoxin A production by Pseudomonas aeruginosa . Microbiology155:2265–2273 [CrossRef][PubMed]
    [Google Scholar]
  18. Davis B. M., Jensen R., Williams P., O'Shea P.. ( 2010;). The interaction of N-acylhomoserine lactone quorum sensing signaling molecules with biological membranes: implications for inter-kingdom signaling. PLoS ONE5:e13522 [CrossRef][PubMed]
    [Google Scholar]
  19. de Bold A. J., Bruneau B. G., Kuroski de Bold M. L.. ( 1996;). Mechanical and neuroendocrine regulation of the endocrine heart. Cardiovasc Res31:7–18 [CrossRef][PubMed]
    [Google Scholar]
  20. de Kievit T. R., Iglewski B. H.. ( 2000;). Bacterial quorum sensing in pathogenic relationships. Infect Immun68:4839–4849 [CrossRef][PubMed]
    [Google Scholar]
  21. Denning G. M., Railsback M. A., Rasmussen G. T., Cox C. D., Britigan B. E.. ( 1998;). Pseudomonas pyocyanine alters calcium signaling in human airway epithelial cells. Am J Physiol274:L893–L900[PubMed]
    [Google Scholar]
  22. Déziel E., Lépine F., Milot S., He J., Mindrinos M. N., Tompkins R. G., Rahme L. G.. ( 2004;). Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A101:1339–1344 [CrossRef][PubMed]
    [Google Scholar]
  23. Diggle S. P., Winzer K., Lazdunski A., Williams P., Cámara M.. ( 2002;). Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol184:2576–2586 [CrossRef][PubMed]
    [Google Scholar]
  24. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Cámara M., Williams P.. ( 2003;). The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol50:29–43 [CrossRef][PubMed]
    [Google Scholar]
  25. Diggle S. P., Cornelis P., Williams P., Cámara M.. ( 2006;). 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol296:83–91 [CrossRef][PubMed]
    [Google Scholar]
  26. Diggle S. P., Gardner A., West S. A., Griffin A. S.. ( 2007;). Evolutionary theory of bacterial quorum sensing: when is a signal not a signal?. Philos Trans R Soc Lond B Biol Sci362:1241–1249 [CrossRef][PubMed]
    [Google Scholar]
  27. Dong Y. H., Zhang X. F., Xu J. L., Tan A. T., Zhang L. H.. ( 2005;). VqsM, a novel AraC-type global regulator of quorum-sensing signalling and virulence in Pseudomonas aeruginosa . Mol Microbiol58:552–564 [CrossRef][PubMed]
    [Google Scholar]
  28. Ferrell E., Carty N. L., Colmer-Hamood J. A., Hamood A. N., West S. E.. ( 2008;). Regulation of Pseudomonas aeruginosa ptxR by Vfr. Microbiology154:431–439 [CrossRef][PubMed]
    [Google Scholar]
  29. Fogle M. R., Griswold J. A., Oliver J. W., Hamood A. N.. ( 2002;). Anti-ETA IgG neutralizes the effects of Pseudomonas aeruginosa exotoxin A. J Surg Res106:86–98 [CrossRef][PubMed]
    [Google Scholar]
  30. Fuqua C., Parsek M. R., Greenberg E. P.. ( 2001;). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet35:439–468 [CrossRef][PubMed]
    [Google Scholar]
  31. Gallagher L. A., Manoil C.. ( 2001;). Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol183:6207–6214 [CrossRef][PubMed]
    [Google Scholar]
  32. Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., Manoil C.. ( 2002;). Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa . J Bacteriol184:6472–6480 [CrossRef][PubMed]
    [Google Scholar]
  33. Goldberg J. B., Coyne M. J. Jr, Neely A. N., Holder I. A.. ( 1995;). Avirulence of a Pseudomonas aeruginosa algC mutant in a burned-mouse model of infection. Infect Immun63:4166–4169[PubMed]
    [Google Scholar]
  34. Govan J. R., Deretic V.. ( 1996;). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev60:539–574[PubMed]
    [Google Scholar]
  35. Guina T., Purvine S. O., Yi E. C., Eng J., Goodlett D. R., Aebersold R., Miller S. I.. ( 2003;). Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc Natl Acad Sci U S A100:2771–2776 [CrossRef][PubMed]
    [Google Scholar]
  36. Hamood A. N., Griswold J. A., Duhan C. M.. ( 1996;). Production of extracellular virulence factors by Pseudomonas aeruginosa isolates obtained from tracheal, urinary tract, and wound infections. J Surg Res61:425–432 [CrossRef][PubMed]
    [Google Scholar]
  37. Hamood A. N., Colmer-Hamood J. A., Carty N. L.. ( 2004;). Regulation of Pseudomonas aeruginosa exotoxin A synthesis. Pseudomonas: Virulence and Gene Regulation Ramos J.-L.. New York: Kluwer Academic/Plenum;
    [Google Scholar]
  38. Hassan H. M., Fridovich I.. ( 1980;). Mechanism of the antibiotic action pyocyanine. J Bacteriol141:156–163[PubMed]
    [Google Scholar]
  39. Hegde M., Wood T. K., Jayaraman A.. ( 2009;). The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl Microbiol Biotechnol84:763–776 [CrossRef][PubMed]
    [Google Scholar]
  40. Holloway B. W., Krishnapillai V., Morgan A. F.. ( 1979;). Chromosomal genetics of Pseudomonas . Microbiol Rev43:73–102[PubMed]
    [Google Scholar]
  41. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. et al. ( 2003;). Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A100:14339–14344 [CrossRef][PubMed]
    [Google Scholar]
  42. Jander G., Rahme L. G., Ausubel F. M.. ( 2000;). Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol182:3843–3845 [CrossRef][PubMed]
    [Google Scholar]
  43. Juhas M., Wiehlmann L., Huber B., Jordan D., Lauber J., Salunkhe P., Limpert A. S., von Götz F., Steinmetz I. et al. ( 2004;). Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa . Microbiology150:831–841 [CrossRef][PubMed]
    [Google Scholar]
  44. Juhas M., Eberl L., Tümmler B.. ( 2005;). Quorum sensing: the power of cooperation in the world of Pseudomonas . Environ Microbiol7:459–471 [CrossRef][PubMed]
    [Google Scholar]
  45. Kessler E., Israel M., Landshman N., Chechick A., Blumberg S.. ( 1982;). In vitro inhibition of Pseudomonas aeruginosa elastase by metal-chelating peptide derivatives. Infect Immun38:716–723[PubMed]
    [Google Scholar]
  46. Kipnis E., Sawa T., Wiener-Kronish J.. ( 2006;). Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect36:78–91 [CrossRef][PubMed]
    [Google Scholar]
  47. Krause A., Liepke C., Meyer M., Adermann K., Forssmann W. G., Maronde E.. ( 2001;). Human natriuretic peptides exhibit antimicrobial activity. Eur J Med Res6:215–218[PubMed]
    [Google Scholar]
  48. Kuehn M. J., Kesty N. C.. ( 2005;). Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev19:2645–2655 [CrossRef][PubMed]
    [Google Scholar]
  49. Lau G. W., Hassett D. J., Ran H., Kong F.. ( 2004;). The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med10:599–606 [CrossRef][PubMed]
    [Google Scholar]
  50. Lépine F., Déziel E., Milot S., Rahme L. G.. ( 2003;). A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta1622:36–41[PubMed][CrossRef]
    [Google Scholar]
  51. Lesouhaitier O., Veron W., Chapalain A., Madi A., Blier A.-S., Dagom A., Connil N., Chevalier S., Orange N., Feuilloley M.. ( 2009;). Gram-negative bacterial sensors for eukaryotic signal molecules. Sensors (Basel Switzerland)9:6967–6990[CrossRef]
    [Google Scholar]
  52. Li W., Lyte M., Freestone P. P., Ajmal A., Colmer-Hamood J. A., Hamood A. N.. ( 2009;). Norepinephrine represses the expression of toxA and the siderophore genes in Pseudomonas aeruginosa . FEMS Microbiol Lett299:100–109 [CrossRef][PubMed]
    [Google Scholar]
  53. Liu P. V.. ( 1973;). Exotoxins of Pseudomonas aeruginosa. I. Factors that influence the production of exotoxin A. J Infect Dis128:506–513 [CrossRef][PubMed]
    [Google Scholar]
  54. Livak K. J., Schmittgen T. D.. ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  55. Lory S.. ( 1986;). Effect of iron on accumulation of exotoxin A-specific mRNA in Pseudomonas aeruginosa . J Bacteriol168:1451–1456[PubMed]
    [Google Scholar]
  56. Lyczak J. B., Cannon C. L., Pier G. B.. ( 2000;). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect2:1051–1060 [CrossRef][PubMed]
    [Google Scholar]
  57. Mahajan-Miklos S., Tan M. W., Rahme L. G., Ausubel F. M.. ( 1999;). Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell96:47–56 [CrossRef][PubMed]
    [Google Scholar]
  58. Mashburn L. M., Whiteley M.. ( 2005;). Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature437:422–425 [CrossRef][PubMed]
    [Google Scholar]
  59. McKnight S. L., Iglewski B. H., Pesci E. C.. ( 2000;). The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol182:2702–2708 [CrossRef][PubMed]
    [Google Scholar]
  60. Miller J. F., Mekalanos J. J., Falkow S.. ( 1989;). Coordinate regulation and sensory transduction in the control of bacterial virulence. Science243:916–922 [CrossRef][PubMed]
    [Google Scholar]
  61. Morin D., Grasland B., Vallée-Réhel K., Dufau C., Haras D.. ( 2003;). On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A1002:79–92 [CrossRef][PubMed]
    [Google Scholar]
  62. Ochsner U. A., Johnson Z., Lamont I. L., Cunliffe H. E., Vasil M. L.. ( 1996;). Exotoxin A production in Pseudomonas aeruginosa requires the iron-regulated pvdS gene encoding an alternative sigma factor. Mol Microbiol21:1019–1028 [CrossRef][PubMed]
    [Google Scholar]
  63. Pearson J. P., Passador L., Iglewski B. H., Greenberg E. P.. ( 1995;). A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa . Proc Natl Acad Sci U S A92:1490–1494 [CrossRef][PubMed]
    [Google Scholar]
  64. Pearson J. P., Pesci E. C., Iglewski B. H.. ( 1997;). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol179:5756–5767[PubMed]
    [Google Scholar]
  65. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H.. ( 1997;). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol179:3127–3132[PubMed]
    [Google Scholar]
  66. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H.. ( 1999;). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A96:11229–11234 [CrossRef][PubMed]
    [Google Scholar]
  67. Post F., Weilemann L. S., Messow C. M., Sinning C., Münzel T.. ( 2008;). B-Type natriuretic peptide as a marker for sepsis-induced myocardial depression in intensive care patients. Crit Care Med36:3030–3037 [CrossRef][PubMed]
    [Google Scholar]
  68. Potter L. R., Hunter T.. ( 2001;). Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. J Biol Chem276:6057–6060 [CrossRef][PubMed]
    [Google Scholar]
  69. Potter L. R., Abbey-Hosch S., Dickey D. M.. ( 2006;). Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev27:47–72 [CrossRef][PubMed]
    [Google Scholar]
  70. Pujol N., Link E. M., Liu L. X., Kurz C. L., Alloing G., Tan M. W., Ray K. P., Solari R., Johnson C. D., Ewbank J. J.. ( 2001;). A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans . Curr Biol11:809–821 [CrossRef][PubMed]
    [Google Scholar]
  71. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M.. ( 1995;). Common virulence factors for bacterial pathogenicity in plants and animals. Science268:1899–1902 [CrossRef][PubMed]
    [Google Scholar]
  72. Rahme L. G., Ausubel F. M., Cao H., Drenkard E., Goumnerov B. C., Lau G. W., Mahajan-Miklos S., Plotnikova J., Tan M. W. et al. ( 2000;). Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A97:8815–8821 [CrossRef][PubMed]
    [Google Scholar]
  73. Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D.. ( 1997;). The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol24:309–319 [CrossRef][PubMed]
    [Google Scholar]
  74. Rudiger A., Gasser S., Fischler M., Hornemann T., von Eckardstein A., Maggiorini M.. ( 2006;). Comparable increase of B-type natriuretic peptide and amino-terminal pro-B-type natriuretic peptide levels in patients with severe sepsis, septic shock, and acute heart failure. Crit Care Med34:2140–2144 [CrossRef][PubMed]
    [Google Scholar]
  75. Rumbaugh K. P., Griswold J. A., Hamood A. N.. ( 2000;). The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa . Microbes Infect2:1721–1731 [CrossRef][PubMed]
    [Google Scholar]
  76. Sappington K. J., Dandekar A. A., Oinuma K., Greenberg E. P.. ( 2011;). Reversible signal binding by the Pseudomonas aeruginosa quorum-sensing signal receptor LasR. MBio2:e00011-11 [CrossRef][PubMed]
    [Google Scholar]
  77. Schuster M., Greenberg E. P.. ( 2006;). A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa . Int J Med Microbiol296:73–81 [CrossRef][PubMed]
    [Google Scholar]
  78. Smith R. S., Iglewski B. H.. ( 2003;). P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol6:56–60 [CrossRef][PubMed]
    [Google Scholar]
  79. Smith R. S., Harris S. G., Phipps R., Iglewski B.. ( 2002;). The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo . J Bacteriol184:1132–1139 [CrossRef][PubMed]
    [Google Scholar]
  80. Steindler L., Bertani I., De Sordi L., Schwager S., Eberl L., Venturi V.. ( 2009;). LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol75:5131–5140 [CrossRef][PubMed]
    [Google Scholar]
  81. Stiernagle T.. ( 1999;). Maintenance of C. elegans . . C. elegans: A Practical Approach51–67 Hope I. A.. Oxford: Oxford University Press;
    [Google Scholar]
  82. Storey D. G., Ujack E. E., Rabin H. R., Mitchell I.. ( 1998;). Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun66:2521–2528[PubMed]
    [Google Scholar]
  83. Suga S., Nakao K., Itoh H., Komatsu Y., Ogawa Y., Hama N., Imura H.. ( 1992;). Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-β. Possible existence of “vascular natriuretic peptide system”. J Clin Invest90:1145–1149 [CrossRef][PubMed]
    [Google Scholar]
  84. Suga S., Itoh H., Komatsu Y., Ogawa Y., Hama N., Yoshimasa T., Nakao K.. ( 1993;). Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells–evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology133:3038–3041 [CrossRef][PubMed]
    [Google Scholar]
  85. Sulston J., Hodgkin J.. ( 1988;). Methods. The Nematode Caenorhabditis elegans587–606 Wood W. B.. New York: Cold Spring Harbour Laboratory Press;
    [Google Scholar]
  86. Tan M. W., Ausubel F. M.. ( 2000;). Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr Opin Microbiol3:29–34 [CrossRef][PubMed]
    [Google Scholar]
  87. Tan M. W., Mahajan-Miklos S., Ausubel F. M.. ( 1999;). Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A96:715–720 [CrossRef][PubMed]
    [Google Scholar]
  88. Tateda K., Ishii Y., Horikawa M., Matsumoto T., Miyairi S., Pechere J. C., Standiford T. J., Ishiguro M., Yamaguchi K.. ( 2003;). The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun71:5785–5793 [CrossRef][PubMed]
    [Google Scholar]
  89. Usher L. R., Lawson R. A., Geary I., Taylor C. J., Bingle C. D., Taylor G. W., Whyte M. K.. ( 2002;). Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol168:1861–1868[PubMed][CrossRef]
    [Google Scholar]
  90. Veron W., Lesouhaitier O., Pennanec X., Rehel K., Leroux P., Orange N., Feuilloley M. G.. ( 2007;). Natriuretic peptides affect Pseudomonas aeruginosa and specifically modify lipopolysaccharide biosynthesis. FEBS J274:5852–5864 [CrossRef][PubMed]
    [Google Scholar]
  91. Veron W., Orange N., Feuilloley M. G., Lesouhaitier O.. ( 2008;). Natriuretic peptides modify Pseudomonas fluorescens cytotoxicity by regulating cyclic nucleotides and modifying LPS structure. BMC Microbiol8:114 [CrossRef][PubMed]
    [Google Scholar]
  92. Vila G., Resl M., Stelzeneder D., Struck J., Maier C., Riedl M., Hülsmann M., Pacher R., Luger A., Clodi M.. ( 2008;). Plasma NT-proBNP increases in response to LPS administration in healthy men. J Appl Physiol105:1741–1745 [CrossRef][PubMed]
    [Google Scholar]
  93. Wade D. S., Calfee M. W., Rocha E. R., Ling E. A., Engstrom E., Coleman J. P., Pesci E. C.. ( 2005;). Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa . J Bacteriol187:4372–4380 [CrossRef][PubMed]
    [Google Scholar]
  94. Wang X. W., Tan N. S., Ho B., Ding J. L.. ( 2006;). Evidence for the ancient origin of the NF-κB/IκB cascade: its archaic role in pathogen infection and immunity. Proc Natl Acad Sci U S A103:4204–4209 [CrossRef][PubMed]
    [Google Scholar]
  95. Winzer K., Williams P.. ( 2001;). Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol291:131–143 [CrossRef][PubMed]
    [Google Scholar]
  96. Wu L., Estrada O., Zaborina O., Bains M., Shen L., Kohler J. E., Patel N., Musch M. W., Chang E. B. et al. ( 2005;). Recognition of host immune activation by Pseudomonas aeruginosa . Science309:774–777 [CrossRef][PubMed]
    [Google Scholar]
  97. Xiao G., He J., Rahme L. G.. ( 2006;). Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology152:1679–1686 [CrossRef][PubMed]
    [Google Scholar]
  98. Yamashita K., Kaneko H., Yamamoto S., Konagaya T., Kusugami K., Mitsuma T.. ( 1998;). Inhibitory effect of somatostatin on Helicobacter pylori proliferation in vitro. Gastroenterology115:1123–1130 [CrossRef][PubMed]
    [Google Scholar]
  99. Zaborina O., Lepine F., Xiao G., Valuckaite V., Chen Y., Li T., Ciancio M., Zaborin A., Petrof E. O. et al. ( 2007;). Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa . PLoS Pathog3:e35 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046755-0
Loading
/content/journal/micro/10.1099/mic.0.046755-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error