1887

Abstract

is the bacterial agent of Q fever in humans. Here, we describe a unique, ∼7.2 kDa, surface-exposed lipoprotein involved in metal binding which we have termed LimB. LimB was initially identified as a potential metal-binding protein on far-Western (FW) blots containing whole-cell lysate proteins when probed with nickel-coated horseradish peroxidase (Ni-HRP) and developed with a chemiluminescent HRP substrate. The corresponding identity of LimB as CBU1224a was established by matrix-assisted laser desorption ionization-tandem time-of-flight mass spectrometry. analyses with CBU1224a showed no significant similarity to sequences outside strains of . Additional analyses revealed a putative 20 residue signal sequence with the carboxyl end demarcated by a potential lipobox (LSGC) whose Cys residue is predicted to serve as the N-terminal, lipidated Cys of mature LimB. The second residue of mature LimB is predicted to be Ala, an uncharged envelope localization residue. These features suggest that CBU1224a is synthesized as a prolipoprotein which is subsequently lipidated, secreted and anchored in the outer membrane. Mature LimB is predicted to contain 45 aa, of which there are 10 His and 5 Cys; both amino acids are frequently involved in binding transition metal cations. Recombinant LimB (rLimB) was generated and its Ni-HRP-binding activity demonstrated on FW blots. Ni-HRP binding by rLimB was inhibited by >95 % on FW blots done in the presence of EDTA, imidazole, Ni or Zn, and roughly halved in the presence of Co or Fe. The gene was maximally expressed at 3–7 days post-infection in infected Vero cells, coinciding with exponential phase growth. Two isoforms of LimB were detected on FW and Western blots, including a smaller (∼7.2 kDa) species that was the predominant form in small cell variants and a larger isoform (∼8.7 kDa) in large cell variants. LimB is Sarkosyl-insoluble, like many omps. The predicted surface location of LimB was verified by immunoelectron and immunofluorescence microscopy using anti-rLimB antibodies. Overall, the results suggest that LimB is a unique lipoprotein that serves as a surface receptor for divalent metal cations and may play a role in acquiring at least one of these metals during intracellular growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046649-0
2011-04-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/966.html?itemId=/content/journal/micro/10.1099/mic.0.046649-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) ( 1995; ). Current Protocols in Molecular Biology. New York. : Wiley.
    [Google Scholar]
  2. Babu, M. M., Priya, M. L., Selvan, A. T., Madera, M., Gough, J., Aravind, L. & Sankaran, K. ( 2006; ). A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 188, 2761–2773.[CrossRef]
    [Google Scholar]
  3. Beare, P. A., Unsworth, N., Andoh, M., Voth, D. E., Omsland, A., Gilk, S. D., Williams, K. P., Sobral, B. W., Kupko, J. J., III & other authors ( 2009; ). Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77, 642–656.[CrossRef]
    [Google Scholar]
  4. Chung, C. T., Niemela, S. L. & Miller, R. H. ( 1989; ). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86, 2172–2175.[CrossRef]
    [Google Scholar]
  5. Cockrell, D. C., Beare, P. A., Fischer, E. R., Howe, D. & Heinzen, R. A. ( 2008; ). A method for purifying obligate intracellular Coxiella burnetii that employs digitonin lysis of host cells. J Microbiol Methods 72, 321–325.[CrossRef]
    [Google Scholar]
  6. Coleman, S. A., Fischer, E. R., Howe, D., Mead, D. J. & Heinzen, R. A. ( 2004; ). Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol 186, 7344–7352.[CrossRef]
    [Google Scholar]
  7. Flores-Ramírez, G., Toman, R., Sekeyova, Z. & Skultety, L. ( 2009; ). In silico prediction and identification of outer membrane proteins and lipoproteins from Coxiella burnetii by the mass spectrometry techniques. Clin Microbiol Infect 15 (Suppl. 2), 196–197.[CrossRef]
    [Google Scholar]
  8. Fortney, K. R., Young, R. S., Bauer, M. E., Katz, B. P., Hood, A. F., Munson, R. S., Jr & Spinola, S. M. ( 2000; ). Expression of peptidoglycan-associated lipoprotein is required for virulence in the human model of Haemophilus ducreyi infection. Infect Immun 68, 6441–6448.[CrossRef]
    [Google Scholar]
  9. Ge, Y. & Rikihisa, Y. ( 2007; ). Surface-exposed proteins of Ehrlichia chaffeensis. Infect Immun 75, 3833–3841.[CrossRef]
    [Google Scholar]
  10. Geukens, N., De Buck, E., Meyen, E., Maes, L., Vranckx, L., Van Mellaert, L., Anné, J. & Lammertyn, E. ( 2006; ). The type II signal peptidase of Legionella pneumophila. Res Microbiol 157, 836–841.[CrossRef]
    [Google Scholar]
  11. Hantke, K. & Braun, V. ( 1973; ). Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur J Biochem 34, 284–296.[CrossRef]
    [Google Scholar]
  12. Hayashi, S. & Wu, H. C. ( 1990; ). Lipoproteins in bacteria. J Bioenerg Biomembr 22, 451–471.[CrossRef]
    [Google Scholar]
  13. Hicks, L. D., Raghavan, R., Battisti, J. M. & Minnick, M. F. ( 2010; ). A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth. J Bacteriol 192, 2077–2084.[CrossRef]
    [Google Scholar]
  14. Hoover, T. A., Culp, D. W., Vodkin, M. H., Williams, J. C. & Thompson, H. A. ( 2002; ). Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii nine mile strain. Infect Immun 70, 6726–6733.[CrossRef]
    [Google Scholar]
  15. Hutchings, M. I., Palmer, T., Harrington, D. J. & Sutcliffe, I. C. ( 2009; ). Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ‘em, knowing when to fold ‘em. Trends Microbiol 17, 13–21.[CrossRef]
    [Google Scholar]
  16. Inouye, S., Wang, S., Sekizawa, J., Halegoua, S. & Inouye, M. ( 1977; ). Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membrane. Proc Natl Acad Sci U S A 74, 1004–1008.[CrossRef]
    [Google Scholar]
  17. Kiho, T., Nakayama, M., Yasuda, K., Miyakoshi, S., Inukai, M. & Kogen, H. ( 2004; ). Structure–activity relationships of globomycin analogues as antibiotics. Bioorg Med Chem 12, 337–361.[CrossRef]
    [Google Scholar]
  18. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  19. Maurin, M. & Raoult, D. ( 1999; ). Q fever. Clin Microbiol Rev 12, 518–553.
    [Google Scholar]
  20. McCaul, T. F. & Williams, J. C. ( 1981; ). Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol 147, 1063–1076.
    [Google Scholar]
  21. Moos, A. & Hackstadt, T. ( 1987; ). Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect Immun 55, 1144–1150.
    [Google Scholar]
  22. Parrow, N. L., Abbott, J., Lockwood, A. R., Battisti, J. M. & Minnick, M. F. ( 2009; ). Function, regulation, and transcriptional organization of the hemin utilization locus of Bartonella quintana. Infect Immun 77, 307–316.[CrossRef]
    [Google Scholar]
  23. Raghavan, R., Hicks, L. D. & Minnick, M. F. ( 2008; ). Toxic introns and parasitic intein in Coxiella burnetii: legacies of a promiscuous past. J Bacteriol 190, 5934–5943.[CrossRef]
    [Google Scholar]
  24. Rahman, M. S., Ceraul, S. M., Dreher-Lesnick, S. M., Beier, M. S. & Azad, A. F. ( 2007; ). The lspA gene, encoding the type II signal peptidase of Rickettsia typhi: transcriptional and functional analysis. J Bacteriol 189, 336–341.[CrossRef]
    [Google Scholar]
  25. Ratledge, C. & Dover, L. G. ( 2000; ). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54, 881–941.[CrossRef]
    [Google Scholar]
  26. Regis, E. ( 1999; ). The biology of doom: The history of America’s secret germ warfare project. New York. : Henry Holt & Co.
    [Google Scholar]
  27. Rosenzweig, A. C. ( 2002; ). Metallochaperones: bind and deliver. Chem Biol 9, 673–677.[CrossRef]
    [Google Scholar]
  28. Samoilis, G., Psaroulaki, A., Vougas, K., Tselentis, Y. & Tsiotis, G. ( 2007; ). Analysis of whole cell lysate from the intercellular bacterium Coxiella burnetii using two gel-based protein separation techniques. J Proteome Res 6, 3032–3041.[CrossRef]
    [Google Scholar]
  29. Schwan, T. G., Piesman, J., Golde, W. T., Dolan, M. C. & Rosa, P. A. ( 1995; ). Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92, 2909–2913.[CrossRef]
    [Google Scholar]
  30. Seshadri, R. & Samuel, J. ( 2005; ). Genome analysis of Coxiella burnetii species: insights into pathogenesis and evolution and implications for biodefense. Ann N Y Acad Sci 1063, 442–450.[CrossRef]
    [Google Scholar]
  31. Seshadri, R., Paulsen, I. T., Eisen, J. A., Read, T. D., Nelson, K. E., Nelson, W. C., Ward, N. L., Tettelin, H., Davidsen, T. M. & other authors ( 2003; ). Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 100, 5455–5460.[CrossRef]
    [Google Scholar]
  32. Sha, J., Fadl, A. A., Klimpel, G. R., Niesel, D. W., Popov, V. L. & Chopra, A. K. ( 2004; ). The two murein lipoproteins of Salmonella enterica serovar Typhimurium contribute to the virulence of the organism. Infect Immun 72, 3987–4003.[CrossRef]
    [Google Scholar]
  33. Shannon, J. G., Howe, D. & Heinzen, R. A. ( 2005; ). Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci U S A 102, 8722–8727.[CrossRef]
    [Google Scholar]
  34. Slupska, M. M., Chiang, J. H., Luther, W. M., Stewart, J. L., Amii, L., Conrad, A. & Miller, J. H. ( 2000; ). Genes involved in the determination of the rate of inversions at short inverted repeats. Genes Cells 5, 425–437.[CrossRef]
    [Google Scholar]
  35. Tokuda, H. ( 2009; ). Biogenesis of outer membranes in Gram-negative bacteria. Biosci Biotechnol Biochem 73, 465–473.[CrossRef]
    [Google Scholar]
  36. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  37. Vodkin, M. H. & Williams, J. C. ( 1986; ). Overlapping deletion in two spontaneous phase variants of Coxiella burnetii. J Gen Microbiol 132, 2587–2594.
    [Google Scholar]
  38. Voth, D. E. & Heinzen, R. A. ( 2007; ). Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol 9, 829–840.[CrossRef]
    [Google Scholar]
  39. Yamaguchi, K., Yu, F. & Inouye, M. ( 1988; ). A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53, 423–432.[CrossRef]
    [Google Scholar]
  40. Zamboni, D. S., McGrath, S., Rabinovitch, M. & Roy, C. R. ( 2003; ). Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol Microbiol 49, 965–976.[CrossRef]
    [Google Scholar]
  41. Zhang, G., To, H., Russell, K. E., Hendrix, L. R., Yamaguchi, T., Fukushi, H., Hirai, K. & Samuel, J. E. ( 2005; ). Identification and characterization of an immunodominant 28-kilodalton Coxiella burnetii outer membrane protein specific to isolates associated with acute disease. Infect Immun 73, 1561–1567.[CrossRef]
    [Google Scholar]
  42. Zhao, H. & Waite, J. H. ( 2006; ). Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus. Biochemistry 45, 14223–14231.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046649-0
Loading
/content/journal/micro/10.1099/mic.0.046649-0
Loading

Data & Media loading...

vol. , part 4, pp. 966 - 976

Synthesis of and possible roles for LimB. [PDF](132 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error