1887

Abstract

is the bacterial agent of Q fever in humans. Here, we describe a unique, ∼7.2 kDa, surface-exposed lipoprotein involved in metal binding which we have termed LimB. LimB was initially identified as a potential metal-binding protein on far-Western (FW) blots containing whole-cell lysate proteins when probed with nickel-coated horseradish peroxidase (Ni-HRP) and developed with a chemiluminescent HRP substrate. The corresponding identity of LimB as CBU1224a was established by matrix-assisted laser desorption ionization-tandem time-of-flight mass spectrometry. analyses with CBU1224a showed no significant similarity to sequences outside strains of . Additional analyses revealed a putative 20 residue signal sequence with the carboxyl end demarcated by a potential lipobox (LSGC) whose Cys residue is predicted to serve as the N-terminal, lipidated Cys of mature LimB. The second residue of mature LimB is predicted to be Ala, an uncharged envelope localization residue. These features suggest that CBU1224a is synthesized as a prolipoprotein which is subsequently lipidated, secreted and anchored in the outer membrane. Mature LimB is predicted to contain 45 aa, of which there are 10 His and 5 Cys; both amino acids are frequently involved in binding transition metal cations. Recombinant LimB (rLimB) was generated and its Ni-HRP-binding activity demonstrated on FW blots. Ni-HRP binding by rLimB was inhibited by >95 % on FW blots done in the presence of EDTA, imidazole, Ni or Zn, and roughly halved in the presence of Co or Fe. The gene was maximally expressed at 3–7 days post-infection in infected Vero cells, coinciding with exponential phase growth. Two isoforms of LimB were detected on FW and Western blots, including a smaller (∼7.2 kDa) species that was the predominant form in small cell variants and a larger isoform (∼8.7 kDa) in large cell variants. LimB is Sarkosyl-insoluble, like many omps. The predicted surface location of LimB was verified by immunoelectron and immunofluorescence microscopy using anti-rLimB antibodies. Overall, the results suggest that LimB is a unique lipoprotein that serves as a surface receptor for divalent metal cations and may play a role in acquiring at least one of these metals during intracellular growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046649-0
2011-04-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/966.html?itemId=/content/journal/micro/10.1099/mic.0.046649-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A.. Struhl K.. editors 1995; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Babu M. M., Priya M. L., Selvan A. T., Madera M., Gough J., Aravind L., Sankaran K.. 2006; A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol188:2761–2773
    [Google Scholar]
  3. Beare P. A., Unsworth N., Andoh M., Voth D. E., Omsland A., Gilk S. D., Williams K. P., Sobral B. W., Kupko J. J. III. other authors 2009; Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun77:642–656
    [Google Scholar]
  4. Chung C. T., Niemela S. L., Miller R. H.. 1989; One-step preparation of competent Escherichia coli : transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A86:2172–2175
    [Google Scholar]
  5. Cockrell D. C., Beare P. A., Fischer E. R., Howe D., Heinzen R. A.. 2008; A method for purifying obligate intracellular Coxiella burnetii that employs digitonin lysis of host cells. J Microbiol Methods72:321–325
    [Google Scholar]
  6. Coleman S. A., Fischer E. R., Howe D., Mead D. J., Heinzen R. A.. 2004; Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol186:7344–7352
    [Google Scholar]
  7. Flores-Ramírez G., Toman R., Sekeyova Z., Skultety L.. 2009; In silico prediction and identification of outer membrane proteins and lipoproteins from Coxiella burnetii by the mass spectrometry techniques. Clin Microbiol Infect15:Suppl. 2196–197
    [Google Scholar]
  8. Fortney K. R., Young R. S., Bauer M. E., Katz B. P., Hood A. F., Munson R. S. Jr, Spinola S. M.. 2000; Expression of peptidoglycan-associated lipoprotein is required for virulence in the human model of Haemophilus ducreyi infection. Infect Immun68:6441–6448
    [Google Scholar]
  9. Ge Y., Rikihisa Y.. 2007; Surface-exposed proteins of Ehrlichia chaffeensis . Infect Immun75:3833–3841
    [Google Scholar]
  10. Geukens N., De Buck E., Meyen E., Maes L., Vranckx L., Van Mellaert L., , Anné J., Lammertyn E.. 2006; The type II signal peptidase of Legionella pneumophila . Res Microbiol157:836–841
    [Google Scholar]
  11. Hantke K., Braun V.. 1973; Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur J Biochem34:284–296
    [Google Scholar]
  12. Hayashi S., Wu H. C.. 1990; Lipoproteins in bacteria. J Bioenerg Biomembr22:451–471
    [Google Scholar]
  13. Hicks L. D., Raghavan R., Battisti J. M., Minnick M. F.. 2010; A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth. J Bacteriol192:2077–2084
    [Google Scholar]
  14. Hoover T. A., Culp D. W., Vodkin M. H., Williams J. C., Thompson H. A.. 2002; Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii nine mile strain. Infect Immun70:6726–6733
    [Google Scholar]
  15. Hutchings M. I., Palmer T., Harrington D. J., Sutcliffe I. C.. 2009; Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ‘em, knowing when to fold ‘em. Trends Microbiol17:13–21
    [Google Scholar]
  16. Inouye S., Wang S., Sekizawa J., Halegoua S., Inouye M.. 1977; Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membrane. Proc Natl Acad Sci U S A74:1004–1008
    [Google Scholar]
  17. Kiho T., Nakayama M., Yasuda K., Miyakoshi S., Inukai M., Kogen H.. 2004; Structure–activity relationships of globomycin analogues as antibiotics. Bioorg Med Chem12:337–361
    [Google Scholar]
  18. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  19. Maurin M., Raoult D.. 1999; Q fever. Clin Microbiol Rev12:518–553
    [Google Scholar]
  20. McCaul T. F., Williams J. C.. 1981; Developmental cycle of Coxiella burnetii : structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol147:1063–1076
    [Google Scholar]
  21. Moos A., Hackstadt T.. 1987; Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect Immun55:1144–1150
    [Google Scholar]
  22. Parrow N. L., Abbott J., Lockwood A. R., Battisti J. M., Minnick M. F.. 2009; Function, regulation, and transcriptional organization of the hemin utilization locus of Bartonella quintana . Infect Immun77:307–316
    [Google Scholar]
  23. Raghavan R., Hicks L. D., Minnick M. F.. 2008; Toxic introns and parasitic intein in Coxiella burnetii : legacies of a promiscuous past. J Bacteriol190:5934–5943
    [Google Scholar]
  24. Rahman M. S., Ceraul S. M., Dreher-Lesnick S. M., Beier M. S., Azad A. F.. 2007; The lspA gene, encoding the type II signal peptidase of Rickettsia typhi : transcriptional and functional analysis. J Bacteriol189:336–341
    [Google Scholar]
  25. Ratledge C., Dover L. G.. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol54:881–941
    [Google Scholar]
  26. Regis E.. 1999; The biology of doom: The history of America’s secret germ warfare project New York: Henry Holt & Co;
    [Google Scholar]
  27. Rosenzweig A. C.. 2002; Metallochaperones: bind and deliver. Chem Biol9:673–677
    [Google Scholar]
  28. Samoilis G., Psaroulaki A., Vougas K., Tselentis Y., Tsiotis G.. 2007; Analysis of whole cell lysate from the intercellular bacterium Coxiella burnetii using two gel-based protein separation techniques. J Proteome Res6:3032–3041
    [Google Scholar]
  29. Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A.. 1995; Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A92:2909–2913
    [Google Scholar]
  30. Seshadri R., Samuel J.. 2005; Genome analysis of Coxiella burnetii species: insights into pathogenesis and evolution and implications for biodefense. Ann N Y Acad Sci1063:442–450
    [Google Scholar]
  31. Seshadri R., Paulsen I. T., Eisen J. A., Read T. D., Nelson K. E., Nelson W. C., Ward N. L., Tettelin H., Davidsen T. M.. other authors 2003; Complete genome sequence of the Q-fever pathogen Coxiella burnetii . Proc Natl Acad Sci U S A100:5455–5460
    [Google Scholar]
  32. Sha J., Fadl A. A., Klimpel G. R., Niesel D. W., Popov V. L., Chopra A. K.. 2004; The two murein lipoproteins of Salmonella enterica serovar Typhimurium contribute to the virulence of the organism. Infect Immun72:3987–4003
    [Google Scholar]
  33. Shannon J. G., Howe D., Heinzen R. A.. 2005; Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci U S A102:8722–8727
    [Google Scholar]
  34. Slupska M. M., Chiang J. H., Luther W. M., Stewart J. L., Amii L., Conrad A., Miller J. H.. 2000; Genes involved in the determination of the rate of inversions at short inverted repeats. Genes Cells5:425–437
    [Google Scholar]
  35. Tokuda H.. 2009; Biogenesis of outer membranes in Gram-negative bacteria. Biosci Biotechnol Biochem73:465–473
    [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J.. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A76:4350–4354
    [Google Scholar]
  37. Vodkin M. H., Williams J. C.. 1986; Overlapping deletion in two spontaneous phase variants of Coxiella burnetii . J Gen Microbiol132:2587–2594
    [Google Scholar]
  38. Voth D. E., Heinzen R. A.. 2007; Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii . Cell Microbiol9:829–840
    [Google Scholar]
  39. Yamaguchi K., Yu F., Inouye M.. 1988; A single amino acid determinant of the membrane localization of lipoproteins in E. coli . Cell53:423–432
    [Google Scholar]
  40. Zamboni D. S., McGrath S., Rabinovitch M., Roy C. R.. 2003; Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol Microbiol49:965–976
    [Google Scholar]
  41. Zhang G., To H., Russell K. E., Hendrix L. R., Yamaguchi T., Fukushi H., Hirai K., Samuel J. E.. 2005; Identification and characterization of an immunodominant 28-kilodalton Coxiella burnetii outer membrane protein specific to isolates associated with acute disease. Infect Immun73:1561–1567
    [Google Scholar]
  42. Zhao H., Waite J. H.. 2006; Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus. Biochemistry45:14223–14231
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046649-0
Loading
/content/journal/micro/10.1099/mic.0.046649-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error