1887

Abstract

Biofilm production by staphylococci is an important virulence determinant mediated by the -encoded polysaccharide intercellular adhesin (PIA) or by surface and extracellular proteins. Deletion of the accessory regulator significantly reduced biofilm-forming capacity in CSF41498, whereas multicopy complemented the mutant and increased wild-type biofilm production. In , SarX negatively regulates the accessory gene regulator (Agr) system, which in turn has strain-specific effects on biofilm regulation. Here we found that purified SarX protein bound specifically to the P3 promoter. However RT-PCR analysis revealed that both mutation of and multicopy activated RNAIII transcription, making it difficult to correlate -mediated biofilm regulation with altered activity. In contrast, RT-PCR and immunoblot analysis revealed that transcription and PIA expression were decreased in the mutant, whereas multicopy increased and PIA expression. Furthermore, multicopy did not promote biofilms in an mutant. Finally, purified SarX protein bound specifically to the operon promoter. Taken together, these data reveal that the SarX protein regulates the transcriptional activity of the and loci and controls the biofilm phenotype, primarily by regulating transcription and PIA production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046581-0
2011-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1042.html?itemId=/content/journal/micro/10.1099/mic.0.046581-0&mimeType=html&fmt=ahah

References

  1. Beenken, K. E., Blevins, J. S. & Smeltzer, M. S. ( 2003; ). Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun 71, 4206–4211.[CrossRef]
    [Google Scholar]
  2. Beenken, K. E., Mrak, L. N., Griffin, L. M., Zielinska, A. K., Shaw, L. N., Rice, K. C., Horswill, A. R., Bayles, K. W. & Smeltzer, M. S. ( 2010; ). Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS ONE 5, e10790.[CrossRef]
    [Google Scholar]
  3. Biswas, R., Voggu, L., Simon, U. K., Hentschel, P., Thumm, G. & Götz, F. ( 2006; ). Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett 259, 260–268.[CrossRef]
    [Google Scholar]
  4. Boles, B. R. & Horswill, A. R. ( 2008; ). Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4, e1000052.[CrossRef]
    [Google Scholar]
  5. Bruckner, R. ( 1997; ). Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol Lett 151, 1–8.[CrossRef]
    [Google Scholar]
  6. Coelho, L. R., Souza, R. R., Ferreira, F. A., Guimarães, M. A., Ferreira-Carvalho, B. T. & Figueiredo, A. M. ( 2008; ). agr RNAIII divergently regulates glucose-induced biofilm formation in clinical isolates of Staphylococcus aureus. Microbiology 154, 3480–3490.[CrossRef]
    [Google Scholar]
  7. Conlon, K. M., Humphreys, H. & O'Gara, J. P. ( 2002a; ). icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184, 4400–4408.[CrossRef]
    [Google Scholar]
  8. Conlon, K. M., Humphreys, H. & O'Gara, J. P. ( 2002b; ). Regulation of icaR gene expression in Staphylococcus epidermidis. FEMS Microbiol Lett 216, 171–177.[CrossRef]
    [Google Scholar]
  9. Cramton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W. & Götz, F. ( 1999; ). The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67, 5427–5433.
    [Google Scholar]
  10. Gill, S. R., Fouts, D. E., Archer, G. L., Mongodin, E. F., Deboy, R. T., Ravel, J., Paulsen, I. T., Kolonay, J. F., Brinkac, L. & other authors ( 2005; ). Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187, 2426–2438.[CrossRef]
    [Google Scholar]
  11. Heilmann, C., Hussain, M., Peters, G. & Götz, F. ( 1997; ). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24, 1013–1024.[CrossRef]
    [Google Scholar]
  12. Hennig, S., Nyunt Wai, S. & Ziebuhr, W. ( 2007; ). Spontaneous switch to PIA-independent biofilm formation in an ica-positive Staphylococcus epidermidis isolate. Int J Med Microbiol 297, 117–122.[CrossRef]
    [Google Scholar]
  13. Holland, L. M., O'Donnell, S. T., Ryjenkov, D. A., Gomelsky, L., Slater, S. R., Fey, P. D., Gomelsky, M. & O'Gara, J. P. ( 2008; ). A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP. J Bacteriol 190, 5178–5189.[CrossRef]
    [Google Scholar]
  14. Khan, S. A. & Novick, R. P. ( 1983; ). Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid 10, 251–259.[CrossRef]
    [Google Scholar]
  15. Kreiswirth, B. N., Löfdahl, S., Betley, M. J., O'Reilly, M., Schlievert, P. M., Bergdoll, M. S. & Novick, R. P. ( 1983; ). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712.[CrossRef]
    [Google Scholar]
  16. Lee, C. Y., Buranen, S. L. & Ye, Z. H. ( 1991; ). Construction of single-copy integration vectors for Staphylococcus aureus. Gene 103, 101–105.[CrossRef]
    [Google Scholar]
  17. Mack, D., Fischer, W., Krokotsch, A., Leopold, K., Hartmann, R., Egge, H. & Laufs, R. ( 1996; ). The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178, 175–183.
    [Google Scholar]
  18. Maira-Litrán, T., Kropec, A., Abeygunawardana, C., Joyce, J., Mark, G., III, Goldmann, D. A. & Pier, G. B. ( 2002; ). Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 70, 4433–4440.[CrossRef]
    [Google Scholar]
  19. Mani, N., Tobin, P. & Jayaswal, R. K. ( 1993; ). Isolation and characterization of autolysis-defective mutants of Staphylococcus aureus created by Tn917-lacZ mutagenesis. J Bacteriol 175, 1493–1499.
    [Google Scholar]
  20. Manna, A. C. & Cheung, A. L. ( 2006; ). Expression of SarX, a negative regulator of agr and exoprotein synthesis, is activated by MgrA in Staphylococcus aureus. J Bacteriol 188, 4288–4299.[CrossRef]
    [Google Scholar]
  21. Martineau, F., Picard, F. J., Roy, P. H., Ouellette, M. & Bergeron, M. G. ( 1996; ). Species-specific and ubiquitous DNA-based assays for rapid identification of Staphylococcus epidermidis. J Clin Microbiol 34, 2888–2893.
    [Google Scholar]
  22. Morfeldt, E., Taylor, D., von Gabain, A. & Arvidson, S. ( 1995; ). Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14, 4569–4577.
    [Google Scholar]
  23. Morfeldt, E., Panova-Sapundjieva, I., Gustafsson, B. & Arvidson, S. ( 1996; ). Detection of the response regulator AgrA in the cytosolic fraction of Staphylococcus aureus by monoclonal antibodies. FEMS Microbiol Lett 143, 195–201.[CrossRef]
    [Google Scholar]
  24. Novick, R. P. & Geisinger, E. ( 2008; ). Quorum sensing in staphylococci. Annu Rev Genet 42, 541–564.[CrossRef]
    [Google Scholar]
  25. Novick, R. P., Ross, H. F., Projan, S. J., Kornblum, J., Kreiswirth, B. & Moghazeh, S. ( 1993; ). Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12, 3967–3975.
    [Google Scholar]
  26. O'Gara, J. P. ( 2007; ). ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270, 179–188.[CrossRef]
    [Google Scholar]
  27. O'Neill, E., Pozzi, C., Houston, P., Smyth, D., Humphreys, H., Robinson, D. A. & O'Gara, J. P. ( 2007; ). Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol 45, 1379–1388.[CrossRef]
    [Google Scholar]
  28. Oshida, T., Sugai, M., Komatsuzawa, H., Hong, Y. M., Suginaka, H. & Tomasz, A. ( 1995; ). A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci U S A 92, 285–289.[CrossRef]
    [Google Scholar]
  29. Otto, M. ( 2009; ). Staphylococcus epidermidis – the ‘accidental’ pathogen. Nat Rev Microbiol 7, 555–567.[CrossRef]
    [Google Scholar]
  30. Qin, Z., Ou, Y., Yang, L., Zhu, Y., Tolker-Nielsen, T., Molin, S. & Qu, D. ( 2007; ). Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153, 2083–2092.[CrossRef]
    [Google Scholar]
  31. Regassa, L. B., Novick, R. P. & Betley, M. J. ( 1992; ). Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect Immun 60, 3381–3388.
    [Google Scholar]
  32. Sugai, M., Koike, H., Hong, Y. M., Miyake, Y., Nogami, R. & Suginaka, H. ( 1989; ). Purification of a 51 kDa endo-beta-N-acetylglucosaminidase from Staphylococcus aureus. FEMS Microbiol Lett 52, 267–272.
    [Google Scholar]
  33. Vuong, C., Götz, F. & Otto, M. ( 2000a; ). Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect Immun 68, 1048–1053.[CrossRef]
    [Google Scholar]
  34. Vuong, C., Saenz, H. L., Götz, F. & Otto, M. ( 2000b; ). Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis 182, 1688–1693.[CrossRef]
    [Google Scholar]
  35. Vuong, C., Gerke, C., Somerville, G. A., Fischer, E. R. & Otto, M. ( 2003; ). Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188, 706–718.[CrossRef]
    [Google Scholar]
  36. Vuong, C., Dürr, M., Carmody, A. B., Peschel, A., Klebanoff, S. J. & Otto, M. ( 2004; ). Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell Microbiol 6, 753–759.[CrossRef]
    [Google Scholar]
  37. Wecke, J., Lahav, M., Ginsburg, I., Kwa, E. & Giesbrecht, P. ( 1986; ). Inhibition of wall autolysis of staphylococci by sodium polyanethole sulfonate “liquoid”. Arch Microbiol 144, 110–115.[CrossRef]
    [Google Scholar]
  38. Yabu, K. & Kaneda, S. ( 1995; ). Salt-induced cell lysis of Staphylococcus aureus. Curr Microbiol 30, 299–303.[CrossRef]
    [Google Scholar]
  39. Yarwood, J. M. & Schlievert, P. M. ( 2000; ). Oxygen and carbon dioxide regulation of toxic shock syndrome toxin 1 production by Staphylococcus aureus MN8. J Clin Microbiol 38, 1797–1803.
    [Google Scholar]
  40. Yarwood, J. M., Bartels, D. J., Volper, E. M. & Greenberg, E. P. ( 2004; ). Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186, 1838–1850.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046581-0
Loading
/content/journal/micro/10.1099/mic.0.046581-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error