1887

Abstract

The genome of encodes three acylhomoserine lactone (AHL) quorum sensing systems, each comprising an AHL synthase and a signal receptor/regulator. The BpsI–BpsR system produces -octanoylhomoserine lactone (C8HL) and is positively auto-regulated by its AHL product. The products of the remaining two systems have not been identified. In this study, tandem MS was used to identify and quantify the AHL species produced by three clinical isolates – KHW, K96243 and H11 – three isogenic KHW mutants that each contain a null mutation in an AHL synthase gene, and recombinant heterologously expressing each of the three AHL synthase genes. BpsI synthesized predominantly C8HL, which accounted for more than 95 % of the extracellular AHLs produced in stationary-phase KHW cultures. The major products of BpsI and BpsI were -(3-hydroxy-octanoyl)homoserine lactone (OHC8HL) and -(3-hydroxy-decanoyl)homoserine lactone, respectively, and their corresponding transcriptional regulators, BpsR and BpsR, were capable of driving reporter gene expression in the presence of these cognate lactones. Formation of biofilm by KHW was severely impaired in mutants lacking either BpsI or BpsR but could be restored to near wild-type levels by exogenous C8HL. BpsI was not required, and BpsI was partially required for biofilm formation. Unlike the mutant, biofilm formation in the mutant could not be restored to wild-type levels in the presence of OHC8HL, the product of BpsI. C8HL and OHC8HL had opposite effects on biofilm formation; exogenous C8HL enhanced biofilm formation in both the mutant and wild-type KHW while exogenous OHC8HL suppressed the formation of biofilm in the same strains. We propose that exogenous OHC8HL antagonizes biofilm formation in , possibly by competing with endogenous C8HL for binding to BpsR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046540-0
2011-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1176.html?itemId=/content/journal/micro/10.1099/mic.0.046540-0&mimeType=html&fmt=ahah

References

  1. Cataldi, T. R., Bianco, G. & Abate, S. ( 2009; ). Accurate mass analysis of N-acyl-homoserine-lactones and cognate lactone-opened compounds in bacterial isolates of Pseudomonas aeruginosa PAO1 by LC-ESI-LTQ-FTICR-MS. J Mass Spectrom 44, 182–192.[CrossRef]
    [Google Scholar]
  2. Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D. & Buret, A. ( 1999; ). The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37, 1771–1776.
    [Google Scholar]
  3. Chan, Y. Y. & Chua, K. L. ( 2005; ). The Burkholderia pseudomallei BpeAB–OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol 187, 4707–4719.[CrossRef]
    [Google Scholar]
  4. Chandler, J. R., Duerkop, B. A., Hinz, A., West, T. E., Herman, J. P., Churchill, M. E., Skerrett, S. J. & Greenberg, E. P. ( 2009; ). Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J Bacteriol 191, 5901–5909.[CrossRef]
    [Google Scholar]
  5. Cheng, A. C. & Currie, B. J. ( 2005; ). Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18, 383–416.[CrossRef]
    [Google Scholar]
  6. Choi, K. H., Gaynor, J. B., White, K. G., Lopez, C., Bosio, C. M., Karkhoff-Schweizer, R. R. & Schweizer, H. P. ( 2005; ). A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2, 443–448.[CrossRef]
    [Google Scholar]
  7. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  8. Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. & Greenberg, E. P. ( 1998; ). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298.[CrossRef]
    [Google Scholar]
  9. Duerkop, B. A., Ulrich, R. L. & Greenberg, E. P. ( 2007; ). Octanoyl-homoserine lactone is the cognate signal for Burkholderia mallei BmaR1–BmaI1 quorum sensing. J Bacteriol 189, 5034–5040.[CrossRef]
    [Google Scholar]
  10. Duerkop, B. A., Herman, J. P., Ulrich, R. L., Churchill, M. E. & Greenberg, E. P. ( 2008; ). The Burkholderia mallei BmaR3–BmaI3 quorum-sensing system produces and responds to N-3-hydroxy-octanoyl homoserine lactone. J Bacteriol 190, 5137–5141.[CrossRef]
    [Google Scholar]
  11. Fuqua, C. & Greenberg, E. P. ( 2002; ). Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3, 685–695.[CrossRef]
    [Google Scholar]
  12. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. ( 1994; ). Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176, 269–275.
    [Google Scholar]
  13. Gould, T. A., Herman, J., Krank, J., Murphy, R. C. & Churchill, M. E. ( 2006; ). Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J Bacteriol 188, 773–783.[CrossRef]
    [Google Scholar]
  14. Holden, M. T., Titball, R. W., Peacock, S. J., Cerdeño-Tárraga, A. M., Atkins, T., Crossman, L. C., Pitt, T., Churcher, C., Mungall, K. & other authors ( 2004; ). Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101, 14240–14245.[CrossRef]
    [Google Scholar]
  15. Kiratisin, P. & Sanmee, S. ( 2008; ). Roles and interactions of Burkholderia pseudomallei BpsIR quorum-sensing system determinants. J Bacteriol 190, 7291–7297.[CrossRef]
    [Google Scholar]
  16. Kirisits, M. J. & Parsek, M. R. ( 2006; ). Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol 8, 1841–1849.[CrossRef]
    [Google Scholar]
  17. Lazar Adler, N. R., Govan, B., Cullinane, M., Harper, M., Adler, B. & Boyce, J. D. ( 2009; ). The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol Rev 33, 1079–1099.[CrossRef]
    [Google Scholar]
  18. Lee, H. S., Gu, F., Ching, S. M., Lam, Y. & Chua, K. L. ( 2010; ). CdpA is a Burkholderia pseudomallei cyclic di-GMP phosphodiesterase involved in autoaggregation, flagellum synthesis, motility, biofilm formation, cell invasion, and cytotoxicity. Infect Immun 78, 1832–1840.[CrossRef]
    [Google Scholar]
  19. Lefebre, M. D. & Valvano, M. A. ( 2002; ). Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates. Appl Environ Microbiol 68, 5956–5964.[CrossRef]
    [Google Scholar]
  20. Lumjiaktase, P., Diggle, S. P., Loprasert, S., Tungpradabkul, S., Daykin, M., Cámara, M., Williams, P. & Kunakorn, M. ( 2006; ). Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology 152, 3651–3659.[CrossRef]
    [Google Scholar]
  21. Miller, J. H. ( 1972; ). Assay for β-galactosidase. In Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  22. Nealson, K. H., Platt, T. & Hastings, J. W. ( 1970; ). Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104, 313–322.
    [Google Scholar]
  23. O'Grady, E. P., Viteri, D. F., Malott, R. J. & Sokol, P. A. ( 2009; ). Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia. BMC Genomics 10, 441.[CrossRef]
    [Google Scholar]
  24. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  25. Simon, R., Priefer, U. & Puhler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nat Biotechnol 1, 784–791.[CrossRef]
    [Google Scholar]
  26. Song, Y., Xie, C., Ong, Y. M., Gan, Y. H. & Chua, K. L. ( 2005; ). The BpsIR quorum-sensing system of Burkholderia pseudomallei. J Bacteriol 187, 785–790.[CrossRef]
    [Google Scholar]
  27. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002; ). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  28. Taweechaisupapong, S., Kaewpa, C., Arunyanart, C., Kanla, P., Homchampa, P., Sirisinha, S., Proungvitaya, T. & Wongratanacheewin, S. ( 2005; ). Virulence of Burkholderia pseudomallei does not correlate with biofilm formation. Microb Pathog 39, 77–85.[CrossRef]
    [Google Scholar]
  29. Teitzel, G. M. & Parsek, M. R. ( 2003; ). Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69, 2313–2320.[CrossRef]
    [Google Scholar]
  30. Ulrich, R. L., Deshazer, D., Brueggemann, E. E., Hines, H. B., Oyston, P. C. & Jeddeloh, J. A. ( 2004a; ). Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J Med Microbiol 53, 1053–1064.[CrossRef]
    [Google Scholar]
  31. Ulrich, R. L., Hines, H. B., Parthasarathy, N. & Jeddeloh, J. A. ( 2004b; ). Mutational analysis and biochemical characterization of the Burkholderia thailandensis DW503 quorum-sensing network. J Bacteriol 186, 4350–4360.[CrossRef]
    [Google Scholar]
  32. Valade, E., Thibault, F. M., Gauthier, Y. P., Palencia, M., Popoff, M. Y. & Vidal, D. R. ( 2004; ). The PmlI–PmlR quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the MprA protease. J Bacteriol 186, 2288–2294.[CrossRef]
    [Google Scholar]
  33. Vorachit, M., Lam, K., Jayanetra, P. & Costerton, J. W. ( 1993; ). Resistance of Pseudomonas pseudomallei growing as a biofilm on silastic discs to ceftazidime and co-trimoxazole. Antimicrob Agents Chemother 37, 2000–2002.[CrossRef]
    [Google Scholar]
  34. Vorachit, M., Lam, K., Jayanetra, P. & Costerton, J. W. ( 1995; ). Electron microscopy study of the mode of growth of Pseudomonas pseudomallei in vitro and in vivo. J Trop Med Hyg 98, 379–391.
    [Google Scholar]
  35. White, N. J. ( 2003; ). Melioidosis. Lancet 361, 1715–1722.[CrossRef]
    [Google Scholar]
  36. Wiersinga, W. J., van der Poll, T., White, N. J., Day, N. P. & Peacock, S. J. ( 2006; ). Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 4, 272–282.[CrossRef]
    [Google Scholar]
  37. Yates, E. A., Philipp, B., Buckley, C., Atkinson, S., Chhabra, S. R., Sockett, R. E., Goldner, M., Dessaux, Y., Cámara, M. & other authors ( 2002; ). N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70, 5635–5646.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046540-0
Loading
/content/journal/micro/10.1099/mic.0.046540-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1176 - 1186

Nucleotide sequences of primers used for PCR amplification. Nucleotide sequences of primers used for quantitative real-time PCR. Both tables available as a single PDF(84 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error