1887

Abstract

A panel of cytochrome maturation () mutants of displayed a loss of siderophore (legiobactin) expression, as measured by both the chrome azurol S assay and a -specific bioassay. These data, coupled with the finding that transcripts are expressed by wild-type bacteria grown in deferrated medium, indicate that the Ccm system promotes siderophore expression by . To determine the basis of this newfound role for Ccm, we constructed and tested a set of mutants specifically lacking individual -type cytochromes. Whereas ubiquinol-cytochrome reductase () mutants specifically lacking cytochrome and mutants lacking cytochrome had normal siderophore expression, mutants defective for cytochrome completely lacked legiobactin. These data, along with the expression pattern of mRNA, indicate that cytochrome in particular promotes siderophore expression. In intracellular infection assays, mutants and mutants, but not mutants, had a reduced ability to infect both amoebae and macrophage hosts. Like mutants, the mutants were completely unable to grow in amoebae, highlighting a major role for cytochrome in intracellular infection. To our knowledge, these data represent both the first direct documentation of the importance of a -type cytochrome in expression of a biologically active siderophore and the first insight into the relative importance of -type cytochromes in intracellular infection events.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046490-0
2011-03-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/868.html?itemId=/content/journal/micro/10.1099/mic.0.046490-0&mimeType=html&fmt=ahah

References

  1. Allard, K. A., Viswanathan, V. K. & Cianciotto, N. P. ( 2006; ). lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 188, 1351–1363.[CrossRef]
    [Google Scholar]
  2. Allard, K. A., Dao, J., Sanjeevaiah, P., McCoy-Simandle, K., Chatfield, C. H., Crumrine, D. S., Castignetti, D. & Cianciotto, N. P. ( 2009; ). Purification of legiobactin and importance of this siderophore in lung infection by Legionella pneumophila. Infect Immun 77, 2887–2895.[CrossRef]
    [Google Scholar]
  3. Baert, B., Baysse, C., Matthijs, S. & Cornelis, P. ( 2008; ). Multiple phenotypic alterations caused by a c-type cytochrome maturation ccmC gene mutation in Pseudomonas aeruginosa. Microbiology 154, 127–138.[CrossRef]
    [Google Scholar]
  4. Baysse, C., Matthijs, S., Pattery, T. & Cornelis, P. ( 2001; ). Impact of mutations in hemA and hemH genes on pyoverdine production by Pseudomonas fluorescens ATCC17400. FEMS Microbiol Lett 205, 57–63.[CrossRef]
    [Google Scholar]
  5. Baysse, C., Budzikiewicz, H., Uría Fernández, D. & Cornelis, P. ( 2002; ). Impaired maturation of the siderophore pyoverdine chromophore in Pseudomonas fluorescens ATCC 17400 deficient for the cytochrome c biogenesis protein CcmC. FEBS Lett 523, 23–28.[CrossRef]
    [Google Scholar]
  6. Baysse, C., Matthijs, S., Schobert, M., Layer, G., Jahn, D. & Cornelis, P. ( 2003; ). Co-ordination of iron acquisition, iron porphyrin chelation and iron-protoporphyrin export via the cytochrome c biogenesis protein CcmC in Pseudomonas fluorescens. Microbiology 149, 3543–3552.[CrossRef]
    [Google Scholar]
  7. Cazalet, C., Rusniok, C., Brüggemann, H., Zidane, N., Magnier, A., Ma, L., Tichit, M., Jarraud, S., Bouchier, C. & other authors ( 2004; ). Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36, 1165–1173.[CrossRef]
    [Google Scholar]
  8. Chang, H. Y., Ahn, Y., Pace, L. A., Lin, M. T., Lin, Y. H. & Gennis, R. B. ( 2010; ). The diheme cytochrome c 4 from Vibrio cholerae is a natural electron donor to the respiratory cbb 3 oxygen reductase. Biochemistry 49, 7494–7503.[CrossRef]
    [Google Scholar]
  9. Chatfield, C. H. & Cianciotto, N. P. ( 2007; ). The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 75, 4062–4070.[CrossRef]
    [Google Scholar]
  10. Chien, M., Morozova, I., Shi, S., Sheng, H., Chen, J., Gomez, S. M., Asamani, G., Hill, K., Nuara, J. & other authors ( 2004; ). The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305, 1966–1968.[CrossRef]
    [Google Scholar]
  11. Cianciotto, N. P. ( 2007; ). Iron acquisition by Legionella pneumophila. Biometals 20, 323–331.[CrossRef]
    [Google Scholar]
  12. Cianciotto, N. P. ( 2008a; ). Iron assimilation and type II protein secretion. In Legionella pneumophila: Pathogenesis and Immunity, pp. 33–48. Edited by Hoffman, P. S., Friedman, H. & Bendinelli, M.. New York. : Springer.
    [Google Scholar]
  13. Cianciotto, N. P. ( 2008b; ). Secretion and export in Legionella. In Legionella Molecular Microbiology, pp. 153–166. Edited by Huener, K. & Swanson, M. S.. Norwich, UK. : Horizon Biosciences.
    [Google Scholar]
  14. Cianciotto, N. P. & Fields, B. S. ( 1992; ). Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci U S A 89, 5188–5191.[CrossRef]
    [Google Scholar]
  15. Cianciotto, N. P., Cornelis, P. & Baysse, C. ( 2005; ). Impact of the bacterial type I cytochrome c maturation system on different biological processes. Mol Microbiol 56, 1408–1415.[CrossRef]
    [Google Scholar]
  16. Clarke-Pearson, M. F. & Brady, S. F. ( 2008; ). Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa. J Bacteriol 190, 6927–6930.[CrossRef]
    [Google Scholar]
  17. Dale, J. R., Wade, R., Jr & Dichristina, T. J. ( 2007; ). A conserved histidine in cytochrome c maturation permease CcmB of Shewanella putrefaciens is required for anaerobic growth below a threshold standard redox potential. J Bacteriol 189, 1036–1043.[CrossRef]
    [Google Scholar]
  18. D'Auria, G., Jiménez-Hernández, N., Peris-Bondia, F., Moya, A. & Latorre, A. ( 2010; ). Legionella pneumophila pangenome reveals strain-specific virulence factors. BMC Genomics 11, 181.[CrossRef]
    [Google Scholar]
  19. Davidson, E. & Daldal, F. ( 1987; ). Primary structure of the bc 1 complex of Rhodopseudomonas capsulata. Nucleotide sequence of the pet operon encoding the Rieske cytochrome b, and cytochrome c 1 apoproteins. J Mol Biol 195, 13–24.[CrossRef]
    [Google Scholar]
  20. Deeudom, M., Koomey, M. & Moir, J. W. ( 2008; ). Roles of c-type cytochromes in respiration in Neisseria meningitidis. Microbiology 154, 2857–2864.[CrossRef]
    [Google Scholar]
  21. Diederen, B. M. ( 2008; ). Legionella spp. and Legionnaires' disease. J Infect 56, 1–12.[CrossRef]
    [Google Scholar]
  22. El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., Lau, W. M., Nealson, K. H. & Gorby, Y. A. ( 2010; ). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci U S A 107, 18127–18131.[CrossRef]
    [Google Scholar]
  23. Gaballa, A., Koedam, N. & Cornelis, P. ( 1996; ). A cytochrome c biogenesis gene involved in pyoverdine production in Pseudomonas fluorescens ATCC 17400. Mol Microbiol 21, 777–785.[CrossRef]
    [Google Scholar]
  24. Giudici-Orticoni, M. T., Leroy, G., Nitschke, W. & Bruschi, M. ( 2000; ). Characterization of a new dihemic c 4-type cytochrome isolated from Thiobacillus ferrooxidans. Biochemistry 39, 7205–7211.[CrossRef]
    [Google Scholar]
  25. Glöckner, G., Albert-Weissenberger, C., Weinmann, E., Jacobi, S., Schunder, E., Steinert, M., Hacker, J. & Heuner, K. ( 2008; ). Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol 298, 411–428.[CrossRef]
    [Google Scholar]
  26. Heras, B., Shouldice, S. R., Totsika, M., Scanlon, M. J., Schembri, M. A. & Martin, J. L. ( 2009; ). DSB proteins and bacterial pathogenicity. Nat Rev Microbiol 7, 215–225.[CrossRef]
    [Google Scholar]
  27. Hickey, E. K. & Cianciotto, N. P. ( 1997; ). An iron- and Fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases. Infect Immun 65, 133–143.
    [Google Scholar]
  28. Hoffman, P. S. & Pine, L. ( 1982; ). Respiratory physiology and cytochrome content of Legionella pneumophila. Curr Microbiol 7, 351–356.[CrossRef]
    [Google Scholar]
  29. Klarskov, K., Van Driessche, G., Backers, K., Dumortier, C., Meyer, T. E., Tollin, G., Cusanovich, M. A. & Van Beeumen, J. J. ( 1998; ). Ligand binding and covalent structure of an oxygen-binding heme protein from Rhodobacter sphaeroides, a representative of a new structural family of c-type cytochromes. Biochemistry 37, 5995–6002.[CrossRef]
    [Google Scholar]
  30. Kranz, R. G., Richard-Fogal, C., Taylor, J. S. & Frawley, E. R. ( 2009; ). Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev 73, 510–528.[CrossRef]
    [Google Scholar]
  31. Li, Y., Hopper, A., Overton, T., Squire, D. J., Cole, J. & Tovell, N. ( 2010; ). Organization of the electron transfer chain to oxygen in the obligate human pathogen Neisseria gonorrhoeae: roles for cytochromes c 4 and c 5, but not cytochrome c 2, in oxygen reduction. J Bacteriol 192, 2395–2406.[CrossRef]
    [Google Scholar]
  32. Liles, M. R., Viswanathan, V. K. & Cianciotto, N. P. ( 1998; ). Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun 66, 1776–1782.
    [Google Scholar]
  33. Liles, M. R., Scheel, T. A. & Cianciotto, N. P. ( 2000; ). Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 182, 749–757.[CrossRef]
    [Google Scholar]
  34. Londer, Y. Y., Pokkuluri, P. R., Tiede, D. M. & Schiffer, M. ( 2002; ). Production and preliminary characterization of a recombinant triheme cytochrome c 7 from Geobacter sulfurreducens in Escherichia coli. Biochim Biophys Acta 1554, 202–211.[CrossRef]
    [Google Scholar]
  35. Matthijs, S., Tehrani, K. A., Laus, G., Jackson, R. W., Cooper, R. M. & Cornelis, P. ( 2007; ). Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9, 425–434.[CrossRef]
    [Google Scholar]
  36. Mehta, T., Coppi, M. V., Childers, S. E. & Lovley, D. R. ( 2005; ). Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71, 8634–8641.[CrossRef]
    [Google Scholar]
  37. Miller, R. D. & Hammel, J. M. ( 1985; ). Biochemistry and physiology of Legionella. In Legionellosis, pp. 83–106. Edited by Katz, S. M.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  38. Naylor, J. & Cianciotto, N. P. ( 2004; ). Cytochrome c maturation proteins are critical for in vivo growth of Legionella pneumophila. FEMS Microbiol Lett 241, 249–256.[CrossRef]
    [Google Scholar]
  39. Newton, H. J., Ang, D. K., van Driel, I. R. & Hartland, E. L. ( 2010; ). Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23, 274–298.[CrossRef]
    [Google Scholar]
  40. Nomenclature Committee of the International Union of Biochemistry ( 1992; ). Nomenclature of electron-transfer proteins. Recommendations 1989. J Biol Chem 267, 665–677.
    [Google Scholar]
  41. Pearce, M. M. & Cianciotto, N. P. ( 2009; ). Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol Lett 300, 256–264.[CrossRef]
    [Google Scholar]
  42. Pearce, D. A., Page, M. D., Norris, H. A., Tomlinson, E. J. & Ferguson, S. J. ( 1998; ). Identification of the contiguous Paracoccus denitrificans ccmF and ccmH genes: disruption of ccmF, encoding a putative transporter, results in formation of an unstable apocytochrome c and deficiency in siderophore production. Microbiology 144, 467–477.[CrossRef]
    [Google Scholar]
  43. Pope, C. D., O'Connell, W. & Cianciotto, N. P. ( 1996; ). Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection. Infect Immun 64, 629–636.
    [Google Scholar]
  44. Robey, M. & Cianciotto, N. P. ( 2002; ). Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 70, 5659–5669.[CrossRef]
    [Google Scholar]
  45. Rossier, O. & Cianciotto, N. P. ( 2005; ). The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection. Infect Immun 73, 2020–2032.[CrossRef]
    [Google Scholar]
  46. Rossier, O., Starkenburg, S. R. & Cianciotto, N. P. ( 2004; ). Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect Immun 72, 310–321.[CrossRef]
    [Google Scholar]
  47. Rossier, O., Dao, J. & Cianciotto, N. P. ( 2008; ). The type II secretion system of Legionella pneumophila elaborates two aminopeptidases, as well as a metalloprotease that contributes to differential infection among protozoan hosts. Appl Environ Microbiol 74, 753–761.[CrossRef]
    [Google Scholar]
  48. Sanders, C., Turkarslan, S., Lee, D. W. & Daldal, F. ( 2010; ). Cytochrome c biogenesis: the Ccm system. Trends Microbiol 18, 266–274.[CrossRef]
    [Google Scholar]
  49. Schroeder, G. N., Petty, N. K., Mousnier, A., Harding, C. R., Vogrin, A. J., Wee, B., Fry, N. K., Harrison, T. G., Newton, H. J. & other authors ( 2010; ). Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J Bacteriol 192, 6001–6016.[CrossRef]
    [Google Scholar]
  50. Shi, L., Squier, T. C., Zachara, J. M. & Fredrickson, J. K. ( 2007; ). Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65, 12–20.[CrossRef]
    [Google Scholar]
  51. Starkenburg, S. R., Casey, J. M. & Cianciotto, N. P. ( 2004; ). Siderophore activity among members of the Legionella genus. Curr Microbiol 49, 203–207.
    [Google Scholar]
  52. Stewart, C. R., Rossier, O. & Cianciotto, N. P. ( 2009; ). Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol 191, 1537–1546.[CrossRef]
    [Google Scholar]
  53. Stintzi, A., Cornelis, P., Hohnadel, D., Meyer, J. M., Dean, C., Poole, K., Kourambas, S. & Krishnapillai, V. ( 1996; ). Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO. Microbiology 142, 1181–1190.[CrossRef]
    [Google Scholar]
  54. Stintzi, A., Johnson, Z., Stonehouse, M., Ochsner, U., Meyer, J. M., Vasil, M. L. & Poole, K. ( 1999; ). The pvc gene cluster of Pseudomonas aeruginosa: role in synthesis of the pyoverdine chromophore and regulation by PtxR and PvdS. J Bacteriol 181, 4118–4124.
    [Google Scholar]
  55. Taylor, M., Ross, K. & Bentham, R. ( 2009; ). Legionella, protozoa, and biofilms: interactions within complex microbial systems. Microb Ecol 58, 538–547.[CrossRef]
    [Google Scholar]
  56. Thöny-Meyer, L. ( 1997; ). Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61, 337–376.
    [Google Scholar]
  57. Thöny-Meyer, L., James, P. & Hennecke, H. ( 1991; ). From one gene to two proteins: the biogenesis of cytochromes b and c1 in Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 88, 5001–5005.[CrossRef]
    [Google Scholar]
  58. Viswanathan, V. K., Edelstein, P. H., Pope, C. D. & Cianciotto, N. P. ( 2000; ). The Legionella pneumophila iraAB locus is required for iron assimilation, intracellular infection, and virulence. Infect Immun 68, 1069–1079.[CrossRef]
    [Google Scholar]
  59. Viswanathan, V. K., Kurtz, S., Pedersen, L. L., Abu-Kwaik, Y., Krcmarik, K., Mody, S. & Cianciotto, N. P. ( 2002; ). The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun 70, 1842–1852.[CrossRef]
    [Google Scholar]
  60. Wilson, A. C., Hoch, J. A. & Perego, M. ( 2009; ). Two small c-type cytochromes affect virulence gene expression in Bacillus anthracis. Mol Microbiol 72, 109–123.[CrossRef]
    [Google Scholar]
  61. Yeoman, K. H., Delgado, M. J., Wexler, M., Downie, J. A. & Johnston, A. W. ( 1997; ). High affinity iron acquisition in Rhizobium leguminosarum requires the cycHJKL operon and the feuPQ gene products, which belong to the family of two-component transcriptional regulators. Microbiology 143, 127–134.[CrossRef]
    [Google Scholar]
  62. Yeterian, E., Martin, L. W., Guillon, L., Journet, L., Lamont, I. L. & Schalk, I. J. ( 2010; ). Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38, 1447–1459.[CrossRef]
    [Google Scholar]
  63. Yurgel, S. N., Berrocal, J., Wilson, C. & Kahn, M. L. ( 2007; ). Pleiotropic effects of mutations that alter the Sinorhizobium meliloti cytochrome c respiratory system. Microbiology 153, 399–410.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046490-0
Loading
/content/journal/micro/10.1099/mic.0.046490-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error