1887

Abstract

is one of the most important pathogens in pigs and is also an emerging zoonotic agent. After crossing the epithelial barrier, causes bacteraemia, resulting in meningitis, endocarditis and bronchopneumonia. Since the host environment seems to be an important regulatory component for virulence, we related expression of virulence determinants of to glucose availability during growth and to the sugar metabolism regulator atabolite ontrol rotein (CcpA). We found that expression of the virulence-associated genes , representing operon expression, , representing capsular locus expression, as well as , , and , differed significantly between exponential and early stationary growth of a highly virulent serotype 2 strain. Deletion of altered the expression of the surface-associated virulence factors , and , as well as the two currently proven virulence factors in pigs, and , in early exponential growth. Global expression analysis using a cDNA expression array revealed 259 differentially expressed genes in early exponential growth, of which 141 were more highly expressed in the CcpA mutant strain 10Δ and 118 were expressed to a lower extent. Interestingly, among the latter genes, 18 could be related to capsule and cell wall synthesis. Correspondingly, electron microscopy characterization of strain 10Δ revealed a markedly reduced thickness of the capsule. This phenotype correlated with enhanced binding to porcine plasma proteins and a reduced resistance to killing by porcine neutrophils. Taken together, our data demonstrate that CcpA has a significant effect on the capsule synthesis and virulence properties of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046417-0
2011-06-01
2020-07-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1823.html?itemId=/content/journal/micro/10.1099/mic.0.046417-0&mimeType=html&fmt=ahah

References

  1. Arends J. P., Zanen H. C.. ( 1988;). Meningitis caused by Streptococcus suis in humans. Rev Infect Dis10:131–137 [CrossRef][PubMed]
    [Google Scholar]
  2. Baker E. H., Clark N., Brennan A. L., Fisher D. A., Gyi K. M., Hodson M. E., Philips B. J., Baines D. L., Wood D. M.. ( 2007;). Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. J Appl Physiol102:1969–1975 [CrossRef][PubMed]
    [Google Scholar]
  3. Baums C. G., Valentin-Weigand P.. ( 2009;). Surface-associated and secreted factors of Streptococcus suis in epidemiology, pathogenesis and vaccine development. Anim Health Res Rev10:65–83 [CrossRef][PubMed]
    [Google Scholar]
  4. Baums C. G., Kaim U., Fulde M., Ramachandran G., Goethe R., Valentin-Weigand P.. ( 2006;). Identification of a novel virulence determinant with serum opacification activity in Streptococcus suis . Infect Immun74:6154–6162 [CrossRef][PubMed]
    [Google Scholar]
  5. Baums C. G., Kock C., Beineke A., Bennecke K., Goethe R., Schröder C., Waldmann K. H., Valentin-Weigand P.. ( 2009;). Streptococcus suis bacterin and subunit vaccine immunogenicities and protective efficacies against serotypes 2 and 9. Clin Vaccine Immunol16:200–208 [CrossRef][PubMed]
    [Google Scholar]
  6. Benga L., Goethe R., Rohde M., Valentin-Weigand P.. ( 2004;). Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cell Microbiol6:867–881 [CrossRef][PubMed]
    [Google Scholar]
  7. Benga L., Fulde M., Neis C., Goethe R., Valentin-Weigand P.. ( 2008;). Polysaccharide capsule and suilysin contribute to extracellular survival of Streptococcus suis co-cultivated with primary porcine phagocytes. Vet Microbiol132:211–219 [CrossRef][PubMed]
    [Google Scholar]
  8. Chanter N., Jones P. W., Alexander T. J.. ( 1993;). Meningitis in pigs caused by Streptococcus suis – a speculative review. Vet Microbiol36:39–55 [CrossRef][PubMed]
    [Google Scholar]
  9. Charland N., Harel J., Kobisch M., Lacasse S., Gottschalk M.. ( 1998;). Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiology144:325–332 [CrossRef][PubMed]
    [Google Scholar]
  10. Chaussee M. S., Somerville G. A., Reitzer L., Musser J. M.. ( 2003;). Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes . J Bacteriol185:6016–6024 [CrossRef][PubMed]
    [Google Scholar]
  11. Chauvaux S., Paulsen I. T., Saier M. H. Jr. ( 1998;). CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis . J Bacteriol180:491–497[PubMed]
    [Google Scholar]
  12. Cho K. H., Caparon M. G.. ( 2005;). Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes . Mol Microbiol57:1545–1556 [CrossRef][PubMed]
    [Google Scholar]
  13. Clifton-Hadley F. A., Alexander T. J.. ( 1980;). The carrier site and carrier rate of Streptococcus suis type II in pigs. Vet Rec107:40–41 [CrossRef][PubMed]
    [Google Scholar]
  14. Deutscher J.. ( 2008;). The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol11:87–93 [CrossRef][PubMed]
    [Google Scholar]
  15. Deutscher J., Francke C., Postma P. W.. ( 2006;). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev70:939–1031 [CrossRef][PubMed]
    [Google Scholar]
  16. Dong Y. Q., Chen Y. Y. M., Burne R. A.. ( 2004;). Control of expression of the arginine deiminase operon of Streptococcus gordonii by CcpA and Flp. J Bacteriol186:2511–2514 [CrossRef][PubMed]
    [Google Scholar]
  17. Eckart R. A., Brantl S., Licht A.. ( 2009;). Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis . FEMS Microbiol Lett299:223–231 [CrossRef][PubMed]
    [Google Scholar]
  18. Elliott S. D., Tai J. Y.. ( 1978;). The type-specific polysaccharides of Streptococcus suis . J Exp Med148:1699–1704 [CrossRef][PubMed]
    [Google Scholar]
  19. Fulde M., Willenborg J., de Greeff A., Benga L., Smith H., Valentin-Weigand P., Goethe R.. ( 2011;). ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. Microbiology157:572–582 [CrossRef][PubMed]
    [Google Scholar]
  20. Giammarinaro P., Paton J. C.. ( 2002;). Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae . Infect Immun70:5454–5461 [CrossRef][PubMed]
    [Google Scholar]
  21. Goethe R., Phi-van L.. ( 1998;). Posttranscriptional lipopolysaccharide regulation of the lysozyme gene at processing of the primary transcript in myelomonocytic HD11 cells. J Immunol160:4970–4978[PubMed]
    [Google Scholar]
  22. Gottschalk M., Segura M.. ( 2000;). The pathogenesis of the meningitis caused by Streptococcus suis: the unresolved questions. Vet Microbiol76:259–272 [CrossRef][PubMed]
    [Google Scholar]
  23. Gottschalk M., Xu J., Calzas C., Segura M.. ( 2010;). Streptococcus suis: a new emerging or an old neglected zoonotic pathogen?. Future Microbiol5:371–391 [CrossRef][PubMed]
    [Google Scholar]
  24. Gruening P., Fulde M., Valentin-Weigand P., Goethe R.. ( 2006;). Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis . J Bacteriol188:361–369 [CrossRef][PubMed]
    [Google Scholar]
  25. Hondorp E. R., McIver K. S.. ( 2007;). The Mga virulence regulon: infection where the grass is greener. Mol Microbiol66:1056–1065 [CrossRef][PubMed]
    [Google Scholar]
  26. Iyer R., Baliga N. S., Camilli A.. ( 2005;). Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae . J Bacteriol187:8340–8349 [CrossRef][PubMed]
    [Google Scholar]
  27. Jourlin-Castelli C., Mani N., Nakano M. M., Sonenshein A. L.. ( 2000;). CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis . J Mol Biol295:865–878 [CrossRef][PubMed]
    [Google Scholar]
  28. Kadioglu A., Weiser J. N., Paton J. C., Andrew P. W.. ( 2008;). The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol6:288–301 [CrossRef][PubMed]
    [Google Scholar]
  29. Kietzman C. C., Caparon M. G.. ( 2010;). CcpA and LacD.1 affect temporal regulation of Streptococcus pyogenes virulence genes. Infect Immun78:241–252 [CrossRef][PubMed]
    [Google Scholar]
  30. Kinkel T. L., McIver K. S.. ( 2008;). CcpA-mediated repression of streptolysin S expression and virulence in the group A streptococcus. Infect Immun76:3451–3463 [CrossRef][PubMed]
    [Google Scholar]
  31. Kreikemeyer B., McIver K. S., Podbielski A.. ( 2003;). Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol11:224–232[PubMed][CrossRef]
    [Google Scholar]
  32. Mekalanos J. J.. ( 1992;). Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol174:1–7[PubMed]
    [Google Scholar]
  33. Moreno M. S., Schneider B. L., Maile R. R., Weyler W., Saier M. H. Jr. ( 2001;). Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol39:1366–1381 [CrossRef][PubMed]
    [Google Scholar]
  34. Ogunniyi A. D., Giammarinaro P., Paton J. C.. ( 2002;). The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo . Microbiology148:2045–2053[PubMed]
    [Google Scholar]
  35. Poncet S., Milohanic E., Mazé A., Nait Abdallah J., Aké F., Larribe M., Deghmane A. E., Taha M. K., Dozot M. et al. ( 2009;). Correlations between carbon metabolism and virulence in bacteria. Contrib Microbiol16:88–102 [CrossRef][PubMed]
    [Google Scholar]
  36. Rosenkranz M., Elsner H. A., Stürenburg H. J., Weiller C., Röther J., Sobottka I.. ( 2003;). Streptococcus suis meningitis and septicemia contracted from a wild boar in Germany. J Neurol250:869–870 [CrossRef][PubMed]
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Schaufuss P., Müller F., Valentin-Weigand P.. ( 2007;). Isolation and characterization of a haemolysin from Trichophyton mentagrophytes . Vet Microbiol122:342–349 [CrossRef][PubMed]
    [Google Scholar]
  39. Segura M., Gottschalk M., Olivier M.. ( 2004;). Encapsulated Streptococcus suis inhibits activation of signaling pathways involved in phagocytosis. Infect Immun72:5322–5330 [CrossRef][PubMed]
    [Google Scholar]
  40. Seshasayee A. S. N., Bertone P., Fraser G. M., Luscombe N. M.. ( 2006;). Transcriptional regulatory networks in bacteria: from input signals to output responses. Curr Opin Microbiol9:511–519 [CrossRef][PubMed]
    [Google Scholar]
  41. Shelburne S. A. III, Keith D., Horstmann N., Sumby P., Davenport M. T., Graviss E. A., Brennan R. G., Musser J. M.. ( 2008;). A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus . Proc Natl Acad Sci U S A105:1698–1703 [CrossRef][PubMed]
    [Google Scholar]
  42. Smith H. E., Wisselink H. J., Vecht U., Gielkens A. L. J., Smits M. A.. ( 1995;). High-efficiency transformation and gene inactivation in Streptococcus suis type 2. Microbiology141:181–188 [CrossRef][PubMed]
    [Google Scholar]
  43. Smith H. E., Damman M., van der Velde J., Wagenaar F., Wisselink H. J., Stockhofe-Zurwieden N., Smits M. A.. ( 1999;). Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor. Infect Immun67:1750–1756[PubMed]
    [Google Scholar]
  44. Sonenshein A. L.. ( 2007;). Control of key metabolic intersections in Bacillus subtilis . Nat Rev Microbiol5:917–927 [CrossRef][PubMed]
    [Google Scholar]
  45. Titgemeyer F., Hillen W.. ( 2002;). Global control of sugar metabolism: a Gram-positive solution. Antonie van Leeuwenhoek82:59–71 [CrossRef][PubMed]
    [Google Scholar]
  46. Van Calsteren M. R., Gagnon F., Lacouture S., Fittipaldi N., Gottschalk M.. ( 2010;). Structure determination of Streptococcus suis serotype 2 capsular polysaccharide. Biochem Cell Biol88:513–525 [CrossRef][PubMed]
    [Google Scholar]
  47. Vecht U., Wisselink H. J., van Dijk J. E., Smith H. E.. ( 1992;). Virulence of Streptococcus suis type 2 strains in newborn germfree pigs depends on phenotype. Infect Immun60:550–556[PubMed]
    [Google Scholar]
  48. Vecht U., Wisselink H. J., Stockhofe-Zurwieden N., Smith H. E.. ( 1996;). Characterization of virulence of the Streptococcus suis serotype 2 reference strain Henrichsen S 735 in newborn gnotobiotic pigs. Vet Microbiol51:125–136 [CrossRef][PubMed]
    [Google Scholar]
  49. Wen Z. T., Burne R. A.. ( 2002;). Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans . Appl Environ Microbiol68:1196–1203 [CrossRef][PubMed]
    [Google Scholar]
  50. Winterhoff N., Goethe R., Gruening P., Rohde M., Kalisz H., Smith H. E., Valentin-Weigand P.. ( 2002;). Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the arginine deiminase system of Streptococcus pyogenes . J Bacteriol184:6768–6776 [CrossRef][PubMed]
    [Google Scholar]
  51. Wisselink H. J., Smith H. E., Stockhofe-Zurwieden N., Peperkamp K., Vecht U.. ( 2000;). Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet Microbiol74:237–248 [CrossRef][PubMed]
    [Google Scholar]
  52. Zeng L., Dong Y., Burne R. A.. ( 2006;). Characterization of cis-acting sites controlling arginine deiminase gene expression in Streptococcus gordonii . J Bacteriol188:941–949 [CrossRef][PubMed]
    [Google Scholar]
  53. Zomer A. L., Buist G., Larsen R., Kok J., Kuipers O. P.. ( 2007;). Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. J Bacteriol189:1366–1381 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046417-0
Loading
/content/journal/micro/10.1099/mic.0.046417-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error