1887

Abstract

The presence of specific proteins, including Ece1p, Hwp1p and Als3p, distinguishes the hyphal cell wall from that of yeast-form cells. These proteins are thought to be important for the ability of cells to adhere to living and non-living surfaces and for the cell-to-cell adhesion necessary for biofilm formation, and also to be pivotal in mediating interactions with endothelial cells. Using an flow adhesion assay, we previously observed that yeast cells bind in greater numbers to human microvascular endothelial cells than do hyphal or pseudohyphal cells. This is consistent with previous observations that, in a murine model of disseminated candidiasis, cells locked in the yeast form can efficiently escape the bloodstream and invade host tissues. To more precisely explore the role of Als3p in adhesion and virulence, we deleted both copies of in a wild-type strain. In agreement with previous studies, our Δ null strain formed hyphae normally but was defective in biofilm formation. Whilst was not expressed in our null strain, hypha-specific genes such as and were still induced appropriately. Both the yeast form and the hyphal form of the Δ strain adhered to microvascular endothelial cells to the same extent as a wild-type strain under conditions of flow, indicating that Als3p is not a significant mediator of the initial interaction between fungal cells and the endothelium. Finally, in a murine model of haematogenously disseminated candidiasis the mutant Δ remained as virulent as the wild-type parent strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046326-0
2011-06-01
2020-06-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1806.html?itemId=/content/journal/micro/10.1099/mic.0.046326-0&mimeType=html&fmt=ahah

References

  1. Ades E. W., Candal F. J., Swerlick R. A., George V. G., Summers S., Bosse D. C., Lawley T. J.. ( 1992;). HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol99:683–690 [CrossRef][PubMed]
    [Google Scholar]
  2. Almeida R. S., Brunke S., Albrecht A., Thewes S., Laue M., Edwards J. E., Filler S. G., Hube B.. ( 2008;). The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog4:e1000217 [CrossRef][PubMed]
    [Google Scholar]
  3. Argimón S., Wishart J. A., Leng R., Macaskill S., Mavor A., Alexandris T., Nicholls S., Knight A. W., Enjalbert B. et al. ( 2007;). Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans . Eukaryot Cell6:682–692 [CrossRef][PubMed]
    [Google Scholar]
  4. Bassilana M., Hopkins J., Arkowitz R. A.. ( 2005;). Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth. Eukaryot Cell4:588–603 [CrossRef][PubMed]
    [Google Scholar]
  5. Bendel C. M., Hess D. J., Garni R. M., Henry-Stanley M., Wells C. L.. ( 2003;). Comparative virulence of Candida albicans yeast and filamentous forms in orally and intravenously inoculated mice. Crit Care Med31:501–507 [CrossRef][PubMed]
    [Google Scholar]
  6. Brand A., MacCallum D. M., Brown A. J., Gow N. A., Odds F. C.. ( 2004;). Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell3:900–909 [CrossRef][PubMed]
    [Google Scholar]
  7. Braun B. R., Johnson A. D.. ( 1997;). Control of filament formation in Candida albicans by the transcriptional repressor TUP1 . Science277:105–109 [CrossRef][PubMed]
    [Google Scholar]
  8. Braun B. R., Head W. S., Wang M. X., Johnson A. D.. ( 2000;). Identification and characterization of TUP1-regulated genes in Candida albicans . Genetics156:31–44[PubMed]
    [Google Scholar]
  9. Chen C. G., Yang Y. L., Cheng H. H., Su C. L., Huang S. F., Chen C. T., Liu Y. T., Su I. J., Lo H. J.. ( 2006;). Non-lethal Candida albicans cph1/cph1 efg1/efg1 transcription factor mutant establishing restricted zone of infection in a mouse model of systemic infection. Int J Immunopathol Pharmacol19:561–565[PubMed]
    [Google Scholar]
  10. Church G. M., Gilbert W.. ( 1984;). Genomic sequencing. Proc Natl Acad Sci U S A81:1991–1995 [CrossRef][PubMed]
    [Google Scholar]
  11. Cleary I. A., Mulabagal P., Reinhard S. M., Yadev N. P., Murdoch C., Thornhill M. H., Lazzell A. L., Monteagudo C., Thomas D. P., Saville S. P.. ( 2010;). Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans . Eukaryot Cell9:1363–1373 [CrossRef][PubMed]
    [Google Scholar]
  12. Coleman D. A., Oh S. H., Zhao X., Zhao H., Hutchins J. T., Vernachio J. H., Patti J. M., Hoyer L. L.. ( 2009;). Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J Microbiol Methods78:71–78 [CrossRef][PubMed]
    [Google Scholar]
  13. Correia A., Lermann U., Teixeira L., Cerca F., Botelho S., da Costa R. M., Sampaio P., Gärtner F., Morschhäuser J. et al. ( 2010;). Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect Immun78:4839–4849 [CrossRef][PubMed]
    [Google Scholar]
  14. Daniels K. J., Srikantha T., Lockhart S. R., Pujol C., Soll D. R.. ( 2006;). Opaque cells signal white cells to form biofilms in Candida albicans . EMBO J25:2240–2252 [CrossRef][PubMed]
    [Google Scholar]
  15. Dwivedi P., Thompson A., Xie Z., Kashleva H., Ganguly S., Mitchell A. P., Dongari-Bagtzoglou A.. ( 2011;). Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS ONE6:e16218 [CrossRef][PubMed]
    [Google Scholar]
  16. Fiebig E., Ley K., Arfors K. E.. ( 1991;). Rapid leukocyte accumulation by “spontaneous” rolling and adhesion in the exteriorized rabbit mesentery. Int J Microcirc Clin Exp10:127–144[PubMed]
    [Google Scholar]
  17. Gillum A. M., Tsay E. Y., Kirsch D. R.. ( 1984;). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet198:179–182 [CrossRef][PubMed]
    [Google Scholar]
  18. Green C. B., Zhao X., Yeater K. M., Hoyer L. L.. ( 2005;). Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology151:1051–1060 [CrossRef][PubMed]
    [Google Scholar]
  19. Grocott R. G.. ( 1955;). A stain for fungi in tissue sections and smears using Gomori’s methenamine-silver nitrate technic. Am J Clin Pathol25:975–979[PubMed]
    [Google Scholar]
  20. Grubb S. E., Murdoch C., Sudbery P. E., Saville S. P., Lopez-Ribot J. L., Thornhill M. H.. ( 2009;). Adhesion of Candida albicans to endothelial cells under physiological conditions of flow. Infect Immun77:3872–3878 [CrossRef][PubMed]
    [Google Scholar]
  21. Hoyer L. L., Green C. B., Oh S. H., Zhao X.. ( 2008;). Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. Med Mycol46:1–15 [CrossRef][PubMed]
    [Google Scholar]
  22. Köhler G. A., White T. C., Agabian N.. ( 1997;). Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol179:2331–2338[PubMed]
    [Google Scholar]
  23. Lo H. J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R.. ( 1997;). Nonfilamentous C. albicans mutants are avirulent. Cell90:939–949 [CrossRef][PubMed]
    [Google Scholar]
  24. MacCallum D. M., Odds F. C.. ( 2005;). Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice. Mycoses48:151–161 [CrossRef][PubMed]
    [Google Scholar]
  25. McKenzie C. G., Koser U., Lewis L. E., Bain J. M., Mora-Montes H. M., Barker R. N., Gow N. A., Erwig L. P.. ( 2010;). Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun78:1650–1658 [CrossRef][PubMed]
    [Google Scholar]
  26. Murad A. M., Leng P., Straffon M., Wishart J., Macaskill S., MacCallum D., Schnell N., Talibi D., Marechal D. et al. ( 2001;). NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans . EMBO J20:4742–4752 [CrossRef][PubMed]
    [Google Scholar]
  27. Nailis H., Coenye T., Van Nieuwerburgh F., Deforce D., Nelis H. J.. ( 2006;). Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol7:25 [CrossRef][PubMed]
    [Google Scholar]
  28. Nobile C. J., Mitchell A. P.. ( 2005;). Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol15:1150–1155 [CrossRef][PubMed]
    [Google Scholar]
  29. Nobile C. J., Andes D. R., Nett J. E., Smith F. J., Yue F., Phan Q. T., Edwards J. E., Filler S. G., Mitchell A. P.. ( 2006;). Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog2:e63 [CrossRef][PubMed]
    [Google Scholar]
  30. Nobile C. J., Schneider H. A., Nett J. E., Sheppard D. C., Filler S. G., Andes D. R., Mitchell A. P.. ( 2008;). Complementary adhesin function in C. albicans biofilm formation. Curr Biol18:1017–1024 [CrossRef][PubMed]
    [Google Scholar]
  31. Otoo H. N., Lee K. G., Qiu W., Lipke P. N.. ( 2008;). Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot Cell7:776–782 [CrossRef][PubMed]
    [Google Scholar]
  32. Paget M. S., Hintermann G., Smith C. P.. ( 1994;). Construction and application of streptomycete promoter probe vectors which employ the Streptomyces glaucescens tyrosinase-encoding gene as reporter. Gene146:105–110 [CrossRef][PubMed]
    [Google Scholar]
  33. Phan Q. T., Myers C. L., Fu Y., Sheppard D. C., Yeaman M. R., Welch W. H., Ibrahim A. S., Edwards J. E. Jr, Filler S. G.. ( 2007;). Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol5:e64 [CrossRef][PubMed]
    [Google Scholar]
  34. Ramage G., Saville S. P., Thomas D. P., López-Ribot J. L.. ( 2005;). Candida biofilms: an update. Eukaryot Cell4:633–638 [CrossRef][PubMed]
    [Google Scholar]
  35. Reuss O., Vik A., Kolter R., Morschhäuser J.. ( 2004;). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans . Gene341:119–127 [CrossRef][PubMed]
    [Google Scholar]
  36. Sahni N., Yi S., Daniels K. J., Srikantha T., Pujol C., Soll D. R.. ( 2009;). Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans . PLoS Pathog5:e1000601 [CrossRef][PubMed]
    [Google Scholar]
  37. Sahni N., Yi S., Daniels K. J., Huang G., Srikantha T., Soll D. R.. ( 2010;). Tec1 mediates the pheromone response of the white phenotype of Candida albicans: insights into the evolution of new signal transduction pathways. PLoS Biol8:e1000363 [CrossRef][PubMed]
    [Google Scholar]
  38. Saville S. P., Lazzell A. L., Monteagudo C., Lopez-Ribot J. L.. ( 2003;). Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell2:1053–1060 [CrossRef][PubMed]
    [Google Scholar]
  39. Silverman R. J., Nobbs A. H., Vickerman M. M., Barbour M. E., Jenkinson H. F.. ( 2010;). Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun78:4644–4652 [CrossRef][PubMed]
    [Google Scholar]
  40. Soll D. R.. ( 2008;). Candida biofilms: is adhesion sexy?. Curr Biol18:R717–R720 [CrossRef][PubMed]
    [Google Scholar]
  41. Spellberg B., Johnston D., Phan Q. T., Edwards J. E. Jr, French S. W., Ibrahim A. S., Filler S. G.. ( 2003;). Parenchymal organ, and not splenic, immunity correlates with host survival during disseminated candidiasis. Infect Immun71:5756–5764 [CrossRef][PubMed]
    [Google Scholar]
  42. Stichternoth C., Ernst J. F.. ( 2009;). Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans . Appl Environ Microbiol75:3663–3672 [CrossRef][PubMed]
    [Google Scholar]
  43. Stoldt V. R., Sonneborn A., Leuker C. E., Ernst J. F.. ( 1997;). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J16:1982–1991 [CrossRef][PubMed]
    [Google Scholar]
  44. Toyoda M., Cho T., Kaminishi H., Sudoh M., Chibana H.. ( 2004;). Transcriptional profiling of the early stages of germination in Candida albicans by real-time RT-PCR. FEMS Yeast Res5:287–296 [CrossRef][PubMed]
    [Google Scholar]
  45. Tsai N. Y., Laforce-Nesbitt S. S., Tucker R., Bliss J. M.. ( 2011;). A murine model for disseminated candidiasis in neonates. Pediatr Res69:189–193[PubMed][CrossRef]
    [Google Scholar]
  46. Uppuluri P., Pierce C. G., Thomas D. P., Bubeck S. S., Saville S. P., Lopez-Ribot J. L.. ( 2010;). The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryot Cell9:1531–1537 [CrossRef][PubMed]
    [Google Scholar]
  47. Viudes A., Pemán J., Cantón E., Ubeda P., López-Ribot J. L., Gobernado M.. ( 2002;). Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur J Clin Microbiol Infect Dis21:767–774 [CrossRef][PubMed]
    [Google Scholar]
  48. Wey S. B., Mori M., Pfaller M. A., Woolson R. F., Wenzel R. P.. ( 1988;). Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med148:2642–2645 [CrossRef][PubMed]
    [Google Scholar]
  49. Wu W., Lockhart S. R., Pujol C., Srikantha T., Soll D. R.. ( 2007;). Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol Microbiol64:1587–1604 [CrossRef][PubMed]
    [Google Scholar]
  50. Zhao X., Oh S. H., Cheng G., Green C. B., Nuessen J. A., Yeater K., Leng R. P., Brown A. J., Hoyer L. L.. ( 2004;). ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology150:2415–2428 [CrossRef][PubMed]
    [Google Scholar]
  51. Zhao X., Daniels K. J., Oh S. H., Green C. B., Yeater K. M., Soll D. R., Hoyer L. L.. ( 2006;). Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology152:2287–2299 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046326-0
Loading
/content/journal/micro/10.1099/mic.0.046326-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error