1887

Abstract

PBP5, PBP6 and DacD, encoded by , and , respectively, share substantial amino acid identity and together constitute ~50 % of the total penicillin-binding proteins of . PBP5 helps maintain intrinsic β-lactam resistance within the cell. To test if PBP6 and DacD play simlar roles, we deleted and individually, and in combination with , from 2443 and compared β-lactam sensitivity of the mutants and the parent strain. β-Lactam resistance was complemented by wild-type, but not -carboxypeptidase-deficient PBP5, confirming that enzymic activity of PBP5 is essential for β-lactam resistance. Deletion of and expression of PBP6 during exponential or stationary phase did not alter β-lactam resistance of a mutant. Expression of DacD during mid-exponential phase partially restored β-lactam resistance of the mutant. Therefore, PBP5 -carboxypeptidase activity is essential for intrinsic β-lactam resistance of and DacD can partially compensate for PBP5 in this capacity, whereas PBP6 cannot.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046227-0
2011-09-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/9/2702.html?itemId=/content/journal/micro/10.1099/mic.0.046227-0&mimeType=html&fmt=ahah

References

  1. Anwar H., Dasgupta M. K., Costerton J. W.. ( 1990;). Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother34:2043–2046[PubMed][CrossRef]
    [Google Scholar]
  2. Baquero M. R., Bouzon M., Quintela J. C., Ayala J. A., Moreno F.. ( 1996;). dacD, an Escherichia coli gene encoding a novel penicillin-binding protein (PBP6b) with dd-carboxypeptidase activity. J Bacteriol178:7106–7111[PubMed]
    [Google Scholar]
  3. Buchanan C. E., Sowell M. O.. ( 1982;). Synthesis of penicillin-binding protein 6 by stationary-phase Escherichia coli . J Bacteriol151:491–494[PubMed]
    [Google Scholar]
  4. Chowdhury C., Ghosh A. S.. ( 2011;). Differences in active-site microarchitecture explain the dissimilar behaviors of PBP5 and 6 in Escherichia coli . J Mol Graph Model29:650–656 [CrossRef][PubMed]
    [Google Scholar]
  5. Chowdhury C., Nayak T. R., Young K. D., Ghosh A. S.. ( 2010;). A weak dd-carboxypeptidase activity explains the inability of PBP6 to substitute for PBP5 in maintaining normal cell shape in Escherichia coli . FEMS Microbiol Lett303:76–83 [CrossRef][PubMed]
    [Google Scholar]
  6. CLSI ( 2007;). Performance standards for antimicrobial susceptibility testing. Seventeenth informational supplement. Document M100–S17. CLSI . Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  7. Denome S. A., Elf P. K., Henderson T. A., Nelson D. E., Young K. D.. ( 1999;). Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J Bacteriol181:3981–3993[PubMed]
    [Google Scholar]
  8. Dougherty T. J., Kennedy K., Kessler R. E., Pucci M. J.. ( 1996;). Direct quantitation of the number of individual penicillin-binding proteins per cell in Escherichia coli . J Bacteriol178:6110–6115[PubMed]
    [Google Scholar]
  9. Georgopapadakou N. H.. ( 1993;). Penicillin-binding proteins and bacterial resistance to β-lactams. Antimicrob Agents Chemother37:2045–2053[PubMed][CrossRef]
    [Google Scholar]
  10. Gerrits M. M., Schuijffel D., van Zwet A. A., Kuipers E. J., Vandenbroucke-Grauls C. M., Kusters J. G.. ( 2002;). Alterations in penicillin-binding protein 1A confer resistance to β-lactam antibiotics in Helicobacter pylori . Antimicrob Agents Chemother46:2229–2233 [CrossRef][PubMed]
    [Google Scholar]
  11. Gerrits M. M., Godoy A. P., Kuipers E. J., Ribeiro M. L., Stoof J., Mendonça S., van Vliet A. H., Pedrazzoli J. Jr, Kusters J. G.. ( 2006;). Multiple mutations in or adjacent to the conserved penicillin-binding protein motifs of the penicillin-binding protein 1A confer amoxicillin resistance to Helicobacter pylori . Helicobacter11:181–187 [CrossRef][PubMed]
    [Google Scholar]
  12. Ghosh A. S., Young K. D.. ( 2003;). Sequences near the active site in chimeric penicillin binding proteins 5 and 6 affect uniform morphology of Escherichia coli . J Bacteriol185:2178–2186 [CrossRef][PubMed]
    [Google Scholar]
  13. Ghosh A. S., Kar A. K., Kundu M.. ( 1998;). Alterations in high molecular mass penicillin-binding protein 1 associated with β-lactam resistance in Shigella dysenteriae . Biochem Biophys Res Commun248:669–672 [CrossRef][PubMed]
    [Google Scholar]
  14. Ghosh A. S., Young K. D.. ( 2005;). Helical disposition of proteins and lipopolysaccharide in the outer membrane of Escherichia coli . J Bacteriol187:1913–1922 [CrossRef][PubMed]
    [Google Scholar]
  15. Ghosh A. S., Chowdhury C., Nelson D. E.. ( 2008;). Physiological functions of d-alanine carboxypeptidases in Escherichia coli . Trends Microbiol16:309–317 [CrossRef][PubMed]
    [Google Scholar]
  16. Ghuysen J. M.. ( 1991;). Serine β-lactamases and penicillin-binding proteins. Annu Rev Microbiol45:37–67 [CrossRef][PubMed]
    [Google Scholar]
  17. Gotoh N., Nunomura K., Nishino T.. ( 1990;). Resistance of Pseudomonas aeruginosa to cefsulodin: modification of penicillin-binding protein 3 and mapping of its chromosomal gene. J Antimicrob Chemother25:513–523 [CrossRef][PubMed]
    [Google Scholar]
  18. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130[PubMed]
    [Google Scholar]
  19. Höltje J. V.. ( 1998;). Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli . Microbiol Mol Biol Rev62:181–203[PubMed]
    [Google Scholar]
  20. Kristensen C. S., Eberl L., Sanchez-Romero J. M., Givskov M., Molin S., De Lorenzo V.. ( 1995;). Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4. J Bacteriol177:52–58[PubMed]
    [Google Scholar]
  21. Kumar A., Khan I. A., Koul S., Koul J. L., Taneja S. C., Ali I., Ali F., Sharma S., Mirza Z. M. et al. ( 2008;). Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus . J Antimicrob Chemother61:1270–1276 [CrossRef][PubMed]
    [Google Scholar]
  22. MacLeod D. L., Barker L. M., Sutherland J. L., Moss S. C., Gurgel J. L., Kenney T. F., Burns J. L., Baker W. R.. ( 2009;). Antibacterial activities of a fosfomycin/tobramycin combination: a novel inhaled antibiotic for bronchiectasis. J Antimicrob Chemother64:829–836 [CrossRef][PubMed]
    [Google Scholar]
  23. Moya B., Dötsch A., Juan C., Blázquez J., Zamorano L., Haussler S., Oliver A.. ( 2009;). β-Lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog5:e1000353[CrossRef]
    [Google Scholar]
  24. Murphy K. C.. ( 1998;). Use of recombinant λ recombination function to promote gene replacement in Escherichia coli . J Bacteriol180:2063–2071[PubMed]
    [Google Scholar]
  25. Nelson D. E., Young K. D.. ( 2001;). Contributions of PBP5 and dd-carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli . J Bacteriol183:3055–3064 [CrossRef][PubMed]
    [Google Scholar]
  26. Nelson D. E., Ghosh A. S., Paulson A. L., Young K. D.. ( 2002;). Contribution of membrane-binding and enzymatic domains of penicillin binding protein 5 to maintenance of uniform cellular morphology of Escherichia coli . J Bacteriol184:3630–3639 [CrossRef][PubMed]
    [Google Scholar]
  27. Nilsen T., Ghosh A. S., Goldberg M. B., Young K. D.. ( 2004;). Branching sites and morphological abnormalities behave as ectopic poles in shape-defective Escherichia coli . Mol Microbiol52:1045–1054 [CrossRef][PubMed]
    [Google Scholar]
  28. Nishimura Y., Suzuki H., Hirota Y., Park J. T.. ( 1980;). A mutant of Escherichia coli defective in penicillin-binding protein 5 and lacking d-alanine carboxypeptidase IA. J Bacteriol143:531–534[PubMed]
    [Google Scholar]
  29. Park J. T., Strominger J. L.. ( 1957;). Mode of action of penicillin. Science125:99–101 [CrossRef][PubMed]
    [Google Scholar]
  30. Pepper E. D., Farrell M. J., Finkel S. E.. ( 2006;). Role of penicillin-binding protein 1b in competitive stationary-phase survival of Escherichia coli . FEMS Microbiol Lett263:61–67 [CrossRef][PubMed]
    [Google Scholar]
  31. Sandlin R. C., Goldberg M. B., Maurelli A. T.. ( 1996;). Effect of O-side chain length and composition on the virulence of Shigella flexneri 2a. Mol Microbiol22:63–73 [CrossRef][PubMed]
    [Google Scholar]
  32. Santos J. M., Lobo M., Matos A. P., De Pedro M. A., Arraiano C. M.. ( 2002;). The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli . Mol Microbiol45:1729–1740 [CrossRef][PubMed]
    [Google Scholar]
  33. Sarkar S. K., Ghosh A. S.. ( 2008;). Involvement of O8-antigen in altering β-lactam antibiotic susceptibilities in Escherichia coli . FEMS Microbiol Lett282:59–64 [CrossRef][PubMed]
    [Google Scholar]
  34. Sarkar S. K., Chowdhury C., Ghosh A. S.. ( 2010;). Deletion of penicillin-binding protein 5 (PBP5) sensitises Escherichia coli cells to β-lactam agents. Int J Antimicrob Agents35:244–249 [CrossRef][PubMed]
    [Google Scholar]
  35. Spratt B. G.. ( 1977;). Properties of the penicillin-binding proteins of Escherichia coli K12. Eur J Biochem72:341–352 [CrossRef][PubMed]
    [Google Scholar]
  36. Stubbs K. A., Balcewich M., Mark B. L., Vocadlo D. J.. ( 2007;). Small molecule inhibitors of a glycoside hydrolase attenuate inducible AmpC-mediated beta-lactam resistance. J Biol Chem282:21382–21391 [CrossRef][PubMed]
    [Google Scholar]
  37. Waxman D. J., Strominger J. L.. ( 1983;). Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu Rev Biochem52:825–869 [CrossRef][PubMed]
    [Google Scholar]
  38. Zhao G., Meier T. I., Kahl S. D., Gee K. R., Blaszczak L. C.. ( 1999;). BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. Antimicrob Agents Chemother43:1124–1128[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046227-0
Loading
/content/journal/micro/10.1099/mic.0.046227-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error