Roles of the gene from in biofilm formation and virulence Open Access

Abstract

has emerged as one of the most important food-borne pathogens for humans, and the formation of biofilms by this species may improve its resistance to disadvantageous conditions. The gene of is essential for its virulence in host cells. However, the roles of the gene in biofilm formation and virulence of remain unclear. In this study we constructed a gene mutant with a suicide plasmid. Phenotypic and biological analysis revealed that the mutant was similar to the wild-type strain in growth rate, morphology, and adherence to and invasion of epithelial cells. However, the mutant showed reduced biofilm formation in a quantitative microtitre assay and by scanning electron microscopy, and significantly decreased curli production and intracellular proliferation of macrophages during the biofilm phase. In addition, the mutant was attenuated in a mouse model in both the exponential growth and biofilm phases. These data indicate that the gene is involved in both biofilm formation and virulence of .

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 30871872)
  • Qing Lan Project
  • Program for Changjiang Scholars and Innovative Research Team in University
  • High Technology R&D Program of China (Award 2006AA10A206)
  • National Natural Science Foundation of China (Award 30425031)
  • National Key Technology R&D Program (Award 2009BADB9B01)
  • National Sciences Foundation of Jiangsu Province (Award BK2008011)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046185-0
2011-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1798.html?itemId=/content/journal/micro/10.1099/mic.0.046185-0&mimeType=html&fmt=ahah

References

  1. Anriany Y. A., Weiner R. M., Johnson J. A., De Rezende C. E., Joseph S. W. ( 2001). Salmonella enterica serovar Typhimurium DT104 displays a rugose phenotype. Appl Environ Microbiol 67:4048–4056 [View Article][PubMed]
    [Google Scholar]
  2. Anriany Y., Sahu S. N., Wessels K. R., McCann L. M., Joseph S. W. ( 2006). Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose. Appl Environ Microbiol 72:5002–5012 [View Article][PubMed]
    [Google Scholar]
  3. de Rezende C. E., Anriany Y., Carr L. E., Joseph S. W., Weiner R. M. ( 2005). Capsular polysaccharide surrounds smooth and rugose types of Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 71:7345–7351 [View Article][PubMed]
    [Google Scholar]
  4. Dong H., Zhang X., Pan Z., Peng D., Liu X. ( 2008). Identification of genes for biofilm formation in a Salmonella enteritidis strain by transposon mutagenesis. Wei Sheng Wu Xue Bao 48:869–873[PubMed]
    [Google Scholar]
  5. Geng S. Z., Jiao X. A., Pan Z. M., Chen X. J., Zhang X. M., Chen X. ( 2009). An improved method to knock out the asd gene of Salmonella enterica serovar Pullorum. J Biomed Biotechnol 2009:646380[PubMed] [CrossRef]
    [Google Scholar]
  6. Gerstel U., Römling U. ( 2003). The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium . Res Microbiol 154:659–667 [View Article][PubMed]
    [Google Scholar]
  7. Hamilton S., Bongaerts R. J., Mulholland F., Cochrane B., Porter J., Lucchini S., Lappin-Scott H. M., Hinton J. C. ( 2009). The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics 10:599 [View Article][PubMed]
    [Google Scholar]
  8. Huang X., Phungle V., Dejsirilert S., Tishyadhigama P., Li Y., Liu H., Hirose K., Kawamura Y., Ezaki T. ( 2004). Cloning and characterization of the gene encoding the z66 antigen of Salmonella enterica serovar Typhi. FEMS Microbiol Lett 234:239–246 [View Article][PubMed]
    [Google Scholar]
  9. Jonas K., Tomenius H., Kader A., Normark S., Römling U., Belova L. M., Melefors O. ( 2007). Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol 7:70 [View Article][PubMed]
    [Google Scholar]
  10. Joseph B., Otta S. K., Karunasagar I., Karunasagar I. ( 2001). Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int J Food Microbiol 64:367–372 [View Article][PubMed]
    [Google Scholar]
  11. Kang H. Y., Srinivasan J., Curtiss R, 3rd. ( 2001). Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar Typhimurium vaccine. Infect Immun 70:1739–1749 [View Article][PubMed]
    [Google Scholar]
  12. Korber D. R., Choi A., Wolfaardt G. M., Ingham S. C., Caldwell D. E. ( 1997). Substratum topography influences susceptibility of Salmonella enteritidis biofilms to trisodium phosphate. Appl Environ Microbiol 63:3352–3358[PubMed]
    [Google Scholar]
  13. Latasa C., Roux A., Toledo-Arana A., Ghigo J. M., Gamazo C., Penadés J. R., Lasa I. ( 2005). BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58:1322–1339 [View Article][PubMed]
    [Google Scholar]
  14. Malcova M., Hradecka H., Karpiskova R., Rychlik I. ( 2008). Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: identification of a new colony morphology type and the role of SGI1 in biofilm formation. Vet Microbiol 129:360–366 [View Article][PubMed]
    [Google Scholar]
  15. Marin C., Hernandiz A., Lainez M. ( 2009). Biofilm development capacity of Salmonella strains isolated in poultry: risk factors and their resistance against disinfectants. Poult Sci 88:424–431 [View Article][PubMed]
    [Google Scholar]
  16. Miki T., Okada N., Danbara H. ( 2004). Two periplasmic disulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J Biol Chem 279:34631–34642 [View Article][PubMed]
    [Google Scholar]
  17. Monack D. M., Raupach B., Hromockyj A. E., Falkow S. ( 1996). Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci U S A 93:9833–9838 [View Article][PubMed]
    [Google Scholar]
  18. Ochman H., Soncini F. C., Solomon F., Groisman E. A. ( 1996). Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 93:7800–7804 [View Article][PubMed]
    [Google Scholar]
  19. Patrick M. E., Adcock P. M., Gomez T. M., Altekruse S. F., Holland B. H., Tauxe R. V., Swerdlow D. L. ( 2004). Salmonella enteritidis infections, United States, 1985–1999. Emerg Infect Dis 10:1–7[PubMed] [CrossRef]
    [Google Scholar]
  20. Pratt L. A., Kolter R. ( 1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293 [View Article][PubMed]
    [Google Scholar]
  21. Qiuchun L., Xu Y., Jiao X. ( 2009). Identification of Salmonella pullorum genomic sequences using suppression subtractive hybridization. J Microbiol Biotechnol 19:898–903 [View Article][PubMed]
    [Google Scholar]
  22. Reed L. J., Muench H. ( 1938). A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  23. Römling U. ( 2005). Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62:1234–1246 [View Article][PubMed]
    [Google Scholar]
  24. Römling U., Bian Z., Hammar M., Sierralta W. D., Normark S. ( 1998a). Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731[PubMed]
    [Google Scholar]
  25. Römling U., Sierralta W. D., Eriksson K., Normark S. ( 1998b). Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249–264 [View Article][PubMed]
    [Google Scholar]
  26. Römling U., Bokranz W., Rabsch W., Zogaj X., Nimtz M., Tschäpe H. ( 2003). Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Int J Med Microbiol 293:273–285 [View Article][PubMed]
    [Google Scholar]
  27. Scher K., Romling U., Yaron S. ( 2005). Effect of heat, acidification, and chlorination on Salmonella enterica serovar Typhimurium cells in a biofilm formed at the air-liquid interface. Appl Environ Microbiol 71:1163–1168 [View Article][PubMed]
    [Google Scholar]
  28. Solomon E. B., Niemira B. A., Sapers G. M., Annous B. A. ( 2005). Biofilm formation, cellulose production, and curli biosynthesis by Salmonella originating from produce, animal, and clinical sources. J Food Prot 68:906–912[PubMed]
    [Google Scholar]
  29. White A. P., Gibson D. L., Collinson S. K., Banser P. A., Kay W. W. ( 2003). Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar Enteritidis. J Bacteriol 185:5398–5407 [View Article][PubMed]
    [Google Scholar]
  30. Zogaj X., Nimtz M., Rohde M., Bokranz W., Römling U. ( 2001). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046185-0
Loading
/content/journal/micro/10.1099/mic.0.046185-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed