cAMP receptor protein (CRP) positively regulates the operon in serovar Typhi Free

Abstract

serovar Typhi ( Typhi) is the aetiological agent of typhoid fever in humans. This bacterium is also able to persist in its host, causing a chronic disease by colonizing the spleen, liver and gallbladder, in the last of which the pathogen forms biofilms in order to survive the bile. Several genetic components, including the genes, have been suggested to be involved in the survival of in the gallbladder. In this work we describe how the gene cluster forms a transcriptional unit regulated positively by the cAMP receptor global regulator CRP (cAMP receptor protein). The results obtained show that two CRP-binding sites on the regulatory region of the operon are required to promote transcriptional activation. In this work we also demonstrate that the transcriptional unit is carbon catabolite-repressed in indicating that it forms part of the CRP regulon in enteric bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046045-0
2011-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/636.html?itemId=/content/journal/micro/10.1099/mic.0.046045-0&mimeType=html&fmt=ahah

References

  1. Baichoo N., Heyduk T. 1999; Mapping cyclic nucleotide-induced conformational changes in cyclicAMP receptor protein by a protein footprinting technique using different chemical proteases. Protein Sci 8:518–528
    [Google Scholar]
  2. Belyaeva T. A., Rhodius V. A., Webster C. L., Busby S. J. 1998; Transcription activation at promoters carrying tandem DNA sites for the Escherichia coli cyclic AMP receptor protein: organisation of the RNA polymerase α subunits. J Mol Biol 277:789–804
    [Google Scholar]
  3. Blot N., Berrier C., Hugouvieux-Cotte-Pattat N., Ghazi A., Condemine G. 2002; The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family. J Biol Chem 277:7936–7944
    [Google Scholar]
  4. Botsford J. L., Harman J. G. 1992; Cyclic AMP in prokaryotes. Microbiol Rev 56:100–122
    [Google Scholar]
  5. Brückner R., Titgemeyer F. 2002; Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148
    [Google Scholar]
  6. Busby S., Ebright R. H. 1999; Transcription activation by catabolite activator protein (CAP. J Mol Biol 293:199–213
    [Google Scholar]
  7. Busby S., West D., Lawes M., Webster C., Ishihama A., Kolb A. 1994; Transcription activation by the Escherichia coli cyclic AMP receptor protein. Receptors bound in tandem at promoters can interact synergistically. J Mol Biol 241:341–352
    [Google Scholar]
  8. Cameron A. D., Redfield R. J. 2006; Non-canonical CRP sites control competence regulons in Escherichia coli and many other γ -proteobacteria. Nucleic Acids Res 34:6001–6014
    [Google Scholar]
  9. Chen Z. W., Hsuan S. L., Liao J. W., Chen T. H., Wu C. M., Lee W. C., Lin C. C., Liao C. M., Yeh K. S. other authors 2010; Mutations in the Salmonella enterica serovar Choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 type III secretion system. Vet Res 41:5
    [Google Scholar]
  10. Crawford R. W., Gibson D. L., Kay W. W., Gunn J. S. 2008; Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect Immun 76:5341–5349
    [Google Scholar]
  11. Darwin K. H., Miller V. L. 1999; Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12:405–428
    [Google Scholar]
  12. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  13. De la Cruz M. A., Fernández-Mora M., Guadarrama C., Flores-Valdez M. A., Bustamante V. H., Vázquez A., Calva E. 2007; LeuO antagonizes H-NS and StpA-dependent repression in Salmonella enterica ompS1 . Mol Microbiol 66:727–743
    [Google Scholar]
  14. Finlay B. B. 1994; Molecular and cellular mechanisms of Salmonella pathogenesis. Curr Top Microbiol Immunol 192:163–185
    [Google Scholar]
  15. Flores-Valdez M. A., Puente J. L., Calva E. 2003; Negative osmoregulation of the Salmonella ompS1 porin gene independently of OmpR in an hns background. J Bacteriol 185:6497–6506
    [Google Scholar]
  16. Fuentes J. A., Jofre M. R., Villagra N. A., Mora G. C. 2009; RpoS- and Crp-dependent transcriptional control of Salmonella Typhi taiA and hlyE genes: role of environmental conditions. Res Microbiol 160:800–808
    [Google Scholar]
  17. Fux C. A., Costerton J. W., Stewart P. S., Stoodley P. 2005; Survival strategies of infectious biofilms. Trends Microbiol 13:34–40
    [Google Scholar]
  18. Gibson D. L., White A. P., Snyder S. D., Martin S., Heiss C., Azadi P., Surette M., Kay W. W. 2006; Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence. J Bacteriol 188:7722–7730
    [Google Scholar]
  19. Gil F., Ipinza F., Fuentes J., Fumeron R., Villarreal J. M., Aspée A., Mora G. C., Vásquez C. C., Saavedra C. 2007; The ompW (porin) gene mediates methyl viologen (paraquat) efflux in Salmonella enterica serovar Typhimurium. Res Microbiol 158:529–536
    [Google Scholar]
  20. Gil F., Hernández-Lucas I., Polanco R., Pacheco N., Collao B., Villarreal J. M., Nardocci G., Calva E., Saavedra C. P. 2009; SoxS regulates the expression of the Salmonella enterica serovar Typhimurium ompW gene. Microbiology 155:2490–2497
    [Google Scholar]
  21. Görke B., Stülke J. 2008; Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624
    [Google Scholar]
  22. Hazrah P., Oahn K., Tewari M., Pandey A., Kumar K., Mohapatra T., Shukla H. 2004; The frequency of live bacteria in gallstones. HPB (Oxford) 6:28–32
    [Google Scholar]
  23. Hernández-Lucas I., Gallego-Hernandez A. L., Encarnacion S., Fernandez-Mora M., Martinez-Batallar A. G., Salgado H., Oropeza R., Calva E. 2008; The LysR-type transcriptional regulator LeuO controls expression of several genes in Salmonella enterica serovar Typhi. J Bacteriol 190:1658–1670
    [Google Scholar]
  24. Itoh T., Mikami B., Hashimoto W., Murata K. 2008; Crystal structure of YihS in complex with d-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS -encoded proteins to an aldose-ketose isomerase. J Mol Biol 377:1443–1459
    [Google Scholar]
  25. Ivanov V. I., Minchenkova L. E., Chernov B. K., McPhie P., Ryu S., Garges S., Barber A. M., Zhurkin V. B., Adhya S. 1995; CRP–DNA complexes: inducing the A-like form in the binding sites with an extended central spacer. J Mol Biol 245:228–240
    [Google Scholar]
  26. Kanack K. J., Runyen-Janecky L. J., Ferrell E. P., Suh S.-J., West S. E. H. 2006; Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein. Microbiology 152:3485–3496
    [Google Scholar]
  27. Kawaji H., Mizuno T., Mizushima S. 1979; Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins O-8 and O-9 of Escherichia coli K-12. J Bacteriol 140:843–847
    [Google Scholar]
  28. Keseler I. M., Bonavides-Martinez C., Collado-Vides J., Gama-Castro S., Gunsalus R. P., Johnson D. A., Krummenacker M., Nolan L. M., Paley S. other authors 2009; EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37:D464–D470
    [Google Scholar]
  29. Kolb A., Spassky A., Chapon C., Blazy B., Buc H. 1983; On the different binding affinities of CRP at the lac, gal and malT promoter regions. Nucleic Acids Res 11:7833–7852
    [Google Scholar]
  30. Kolb A., Busby S., Buc H., Garges S., Adhya S. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795
    [Google Scholar]
  31. Liang W., Pascual-Montano A., Silva A. J., Benitez J. A. 2007; The cyclic AMP receptor protein modulates quorum sensing, motility and multiple genes that affect intestinal colonization in Vibrio cholerae . Microbiology 153:2964–2975
    [Google Scholar]
  32. Münch R., Hiller K., Barg H., Heldt D., Linz S., Wingender E., Jahn D. 2003; prodoric: prokaryotic database of gene regulation. Nucleic Acids Res 31:266–269
    [Google Scholar]
  33. Münch R., Hiller K., Grote A., Scheer M., Klein J., Schobert M., Jahn D. 2005; Virtual Footprint and prodoric: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 21:4187–4189
    [Google Scholar]
  34. Okuyama M., Mori H., Chiba S., Kimura A. 2004; Overexpression and characterization of two unknown proteins, YicI and YihQ, originated from Escherichia coli . Protein Expr Purif 37:170–179
    [Google Scholar]
  35. Pang T., Bhutta Z. A., Finlay B. B., Altwegg M. 1995; Typhoid fever and other salmonellosis: a continuing challenge. Trends Microbiol 3:253–255
    [Google Scholar]
  36. Parsek M. R., Fuqua C. 2004; Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 186:4427–4440
    [Google Scholar]
  37. Prouty A. M., Schwesinger W. H., Gunn J. S. 2002; Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 70:2640–2649
    [Google Scholar]
  38. Puente J. L., Flores V., Fernández M., Fuchs Y., Calva E. 1987; Isolation of an ompC -like outer membrane protein gene from Salmonella typhi . Gene 61:75–83
    [Google Scholar]
  39. Pyles E. A., Lee J. C. 1996; Mode of selectivity in cyclic AMP receptor protein-dependent promoters in Escherichia coli . Biochemistry 35:1162–1172
    [Google Scholar]
  40. Rosu V., Chadfield M. S., Santona A., Christensen J. P., Thomsen L. E., Rubino S., Olsen J. E. 2007; Effects of crp deletion in Salmonella enterica serotype Gallinarum. Acta Vet Scand 49:14
    [Google Scholar]
  41. Saito N., Robert M., Kochi H., Matsuo G., Kakazu Y., Soga T., Tomita M. 2009; Metabolite profiling reveals YihU as a novel hydroxybutyrate dehydrogenase for alternative succinic semialdehyde metabolism in Escherichia coli . J Biol Chem 284:16442–16451
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Savery N., Rhodius V., Busby S. 1996; Protein–protein interactions during transcription activation: the case of the Escherichia coli cyclic AMP receptor protein. Philos Trans R Soc Lond B Biol Sci 351:543–550
    [Google Scholar]
  44. Ullmann A., Monod J. 1968; Cyclic AMP as an antagonist of catabolite repression in Escherichia coli . FEBS Lett 2:57–60
    [Google Scholar]
  45. Williams R. M., Rhodius V. A., Bell A. I., Kolb A., Busby S. J. 1996; Orientation of functional activating regions in the Escherichia coli CRP protein during transcription activation at class II promoters. Nucleic Acids Res 24:1112–1118
    [Google Scholar]
  46. Xu M., Su Z. 2009; Computational prediction of cAMP receptor protein (CRP) binding sites in cyanobacterial genomes. BMC Genomics 10:23
    [Google Scholar]
  47. Zhang S., Kingsley R. A., Santos R. L., Andrews-Polymenis H., Raffatellu M., Figueiredo J., Nunes J., Tsolis R. M., Adams L. G. other authors 2003; Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect Immun 71:1–12
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046045-0
Loading
/content/journal/micro/10.1099/mic.0.046045-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed