The operon confers resistance to cationic antimicrobial peptides in Free

Abstract

The operon in Gram-positive bacteria encodes proteins that are necessary for the addition of -alanine to teichoic acids of the cell wall. The addition of -alanine to the cell wall results in a net positive charge on the bacterial cell surface and, as a consequence, can decrease the effectiveness of antimicrobials, such as cationic antimicrobial peptides (CAMPs). Although the roles of the genes have been studied for some Gram-positive organisms, the arrangement of these genes in and the life cycle of the bacterium in the host are markedly different from those of other pathogens. In the current work, we determined the contribution of the putative operon to CAMP resistance. Our data indicate that the operon is necessary for full resistance of to nisin, gallidermin, polymyxin B and vancomycin. We propose that the -alanylation of teichoic acids provides protection against antimicrobial peptides that may be essential for growth of in the host.

Funding
This study was supported by the:
  • US National Institutes of Health (Award DK082156 and AI057637)
  • Natalie V. Zucker Research (Award NS047243)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045997-0
2011-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1457.html?itemId=/content/journal/micro/10.1099/mic.0.045997-0&mimeType=html&fmt=ahah

References

  1. Abachin E., Poyart C., Pellegrini E., Milohanic E., Fiedler F., Berche P., Trieu-Cuot P. ( 2002). Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. . Mol Microbiol 43:1–14 [View Article][PubMed]
    [Google Scholar]
  2. Abi Khattar Z., Rejasse A., Destoumieux-Garzón D., Escoubas J. M., Sanchis V., Lereclus D., Givaudan A., Kallassy M., Nielsen-Leroux C., Gaudriault S. ( 2009). The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J Bacteriol 191:7063–7073 [View Article][PubMed]
    [Google Scholar]
  3. )Transcriptional regulation of the dlt operon in Enterococcus faecalis and further characterization of a dltA mutant
  4. Bartlett J. G., Onderdonk A. B., Cisneros R. L., Kasper D. L. ( 1977). Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis 136:701–705[PubMed] [CrossRef]
    [Google Scholar]
  5. Cao M., Helmann J. D. ( 2004). The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol 186:1136–1146 [View Article][PubMed]
    [Google Scholar]
  6. Dineen S. S., Villapakkam A. C., Nordman J. T., Sonenshein A. L. ( 2007). Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66:206–219 [View Article][PubMed]
    [Google Scholar]
  7. Dubberke E. R., Butler A. M., Yokoe D. S., Mayer J., Hota B., Mangino J. E., Khan Y. M., Popovich K. J., Fraser V. J. ( 2010). Multicenter study of Clostridium difficile infection rates from 2000 to 2006. Infect Control Hosp Epidemiol 10:1030–1037 [CrossRef]
    [Google Scholar]
  8. Dunman P. M., Murphy E., Haney S., Palacios D., Tucker-Kellogg G., Wu S., Brown E. L., Zagursky R. J., Shlaes D., Projan S. J. ( 2001). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353 [View Article][PubMed]
    [Google Scholar]
  9. Estacio W., Anna-Arriola S. S., Adedipe M., Márquez-Magaña L. M. ( 1998). Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis. . J Bacteriol 180:3548–3555[PubMed]
    [Google Scholar]
  10. Fisher N., Shetron-Rama L., Herring-Palmer A., Heffernan B., Bergman N., Hanna P. ( 2006). The dltABCD operon of Bacillus anthracis Sterne is required for virulence and resistance to peptide, enzymatic, and cellular mediators of innate immunity. J Bacteriol 188:1301–1309 [View Article][PubMed]
    [Google Scholar]
  11. Gudmundsson G. H., Agerberth B. ( 1999). Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods 232:45–54 [View Article][PubMed]
    [Google Scholar]
  12. Haghjoo E., Galán J. E. ( 2007). Identification of a transcriptional regulator that controls intracellular gene expression in Salmonella typhi. . Mol Microbiol 64:1549–1561 [View Article][PubMed]
    [Google Scholar]
  13. Hammer-Jespersen K., Munch-Petersen A. ( 1975). Multiple regulation of nucleoside catabolizing enzymes: regulation of the deo operon by the cytR and deoR gene products. Mol Gen Genet 137:327–335 [View Article][PubMed]
    [Google Scholar]
  14. Haraldsen J. D., Sonenshein A. L. ( 2003). Efficient sporulation in Clostridium difficile requires disruption of the σK gene. Mol Microbiol 48:811–821 [View Article][PubMed]
    [Google Scholar]
  15. Heap J. T., Pennington O. J., Cartman S. T., Carter G. P., Minton N. P. ( 2007). The ClosTron: a universal gene knock-out system for the genus Clostridium. . J Microbiol Methods 70:452–464 [View Article][PubMed]
    [Google Scholar]
  16. Hyyrylainen H. L., Vitikainen M., Thwaite J., Wu H., Sarvas M., Harwood C. R., Kontinen V. P., Stephenson K. ( 2000). d-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. . J Biol Chem 275:26696–26703[PubMed]
    [Google Scholar]
  17. Karberg M., Guo H., Zhong J., Coon R., Perutka J., Lambowitz A. M. ( 2001). Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19:1162–1167 [View Article][PubMed]
    [Google Scholar]
  18. Koprivnjak T., Mlakar V., Swanson L., Fournier B., Peschel A., Weiss J. P. ( 2006). Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus. . J Bacteriol 188:3622–3630 [View Article][PubMed]
    [Google Scholar]
  19. Kraus D., Herbert S., Kristian S. A., Khosravi A., Nizet V., Götz F., Peschel A. ( 2008). The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol 8:85 [View Article][PubMed]
    [Google Scholar]
  20. Li M., Cha D. J., Lai Y., Villaruz A. E., Sturdevant D. E., Otto M. ( 2007a). The antimicrobial peptide-sensing system aps of Staphylococcus aureus. . Mol Microbiol 66:1136–1147 [View Article][PubMed]
    [Google Scholar]
  21. Li M., Lai Y., Villaruz A. E., Cha D. J., Sturdevant D. E., Otto M. ( 2007b). Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci U S A 104:9469–9474 [View Article][PubMed]
    [Google Scholar]
  22. Luria S. E., Burrous J. W. ( 1957). Hybridization between Escherichia coli and Shigella. . J Bacteriol 74:461–476[PubMed]
    [Google Scholar]
  23. Mandin P., Fsihi H., Dussurget O., Vergassola M., Milohanic E., Toledo-Arana A., Lasa I., Johansson J., Cossart P. ( 2005). VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 57:1367–1380 [View Article][PubMed]
    [Google Scholar]
  24. Manganelli R., Provvedi R., Berneri C., Oggioni M. R., Pozzi G. ( 1998). Insertion vectors for construction of recombinant conjugative transposons in Bacillus subtilis and Enterococcus faecalis. . FEMS Microbiol Lett 168:259–268 [View Article][PubMed]
    [Google Scholar]
  25. McBride S. M., Sonenshein A. L. ( 2011). Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile. . Infect Immun 79:167–176 [View Article][PubMed]
    [Google Scholar]
  26. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N. ( 2005). An epidemic, toxin gene-variant strain of Clostridium difficile. . N Engl J Med 353:2433–2441 [View Article][PubMed]
    [Google Scholar]
  27. Müller C. A., Autenrieth I. B., Peschel A. ( 2005). Intestinal epithelial barrier and mucosal immunity. Innate defenses of the intestinal epithelial barrier. Cell Mol Life Sci 62:1297–1307 [View Article][PubMed]
    [Google Scholar]
  28. Neuhaus F. C., Baddiley J. ( 2003). A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723 [View Article][PubMed]
    [Google Scholar]
  29. Nizet V. ( 2006). Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol 8:11–26[PubMed]
    [Google Scholar]
  30. O’Brien J. A., Lahue B. J., Caro J. J., Davidson D. M. ( 2007). The emerging infectious challenge of Clostridium difficile-associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol 28:1219–1227 [View Article][PubMed]
    [Google Scholar]
  31. O’Connor J. R., Lyras D., Farrow K. A., Adams V., Powell D. R., Hinds J., Cheung J. K., Rood J. I. ( 2006). Construction and analysis of chromosomal Clostridium difficile mutants. Mol Microbiol 61:1335–1351 [View Article][PubMed]
    [Google Scholar]
  32. Palumbo E., Deghorain M., Cocconcelli P. S., Kleerebezem M., Geyer A., Hartung T., Morath S., Hols P. ( 2006). d-Alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. J Bacteriol 188:3709–3715 [View Article][PubMed]
    [Google Scholar]
  33. Perego M., Glaser P., Minutello A., Strauch M. A., Leopold K., Fischer W. ( 1995). Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 270:15598–15606[PubMed] [CrossRef]
    [Google Scholar]
  34. Peschel A. ( 2002). How do bacteria resist human antimicrobial peptides?. Trends Microbiol 10:179–186 [View Article][PubMed]
    [Google Scholar]
  35. Poyart C., Lamy M. C., Boumaila C., Fiedler F., Trieu-Cuot P. ( 2001). Regulation of d-alanyl-lipoteichoic acid biosynthesis in Streptococcus agalactiae involves a novel two-component regulatory system. J Bacteriol 183:6324–6334 [View Article][PubMed]
    [Google Scholar]
  36. Saïd-Salim B., Dunman P. M., McAleese F. M., Macapagal D., Murphy E., McNamara P. J., Arvidson S., Foster T. J., Projan S. J., Kreiswirth B. N. ( 2003). Global regulation of Staphylococcus aureus genes by Rot. J Bacteriol 185:610–619 [View Article][PubMed]
    [Google Scholar]
  37. Schmittgen T. D., Livak K. J. ( 2008). Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108 [View Article][PubMed]
    [Google Scholar]
  38. Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeño-Tárraga A. M. et al. ( 2006). The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786 [View Article][PubMed]
    [Google Scholar]
  39. Setlow P. ( 1995). Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu Rev Microbiol 49:29–54 [View Article][PubMed]
    [Google Scholar]
  40. Smith C. J., Markowitz S. M., Macrina F. L. ( 1981). Transferable tetracycline resistance in Clostridium difficile. . Antimicrob Agents Chemother 19:997–1003[PubMed] [CrossRef]
    [Google Scholar]
  41. Sonenshein A. L., Haraldsen J. D., Dupuy B. ( 2005). RNA polymerase and alternative sigma factors. Handbook on Clostridia659–669 Durre P. Boca Raton, FL: Taylor and Francis;
    [Google Scholar]
  42. Thomas C. M., Smith C. A. ( 1987). Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol 41:77–101 [View Article][PubMed]
    [Google Scholar]
  43. Vonberg R. P., Kuijper E. J., Wilcox M. H., Barbut F., Tüll P., Gastmeier P., van den Broek P. J., Colville A., Coignard B. et al. ( 2008). Infection control measures to limit the spread of Clostridium difficile. . Clin Microbiol Infect 14:Suppl 52–20 [View Article][PubMed]
    [Google Scholar]
  44. Wartha F., Beiter K., Albiger B., Fernebro J., Zychlinsky A., Normark S., Henriques-Normark B. ( 2007). Capsule and d-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol 9:1162–1171 [View Article][PubMed]
    [Google Scholar]
  45. Weidenmaier C., Peschel A., Kempf V. A., Lucindo N., Yeaman M. R., Bayer A. S. ( 2005). DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun 73:8033–8038 [View Article][PubMed]
    [Google Scholar]
  46. Wüst J., Hardegger U. ( 1983). Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile. . Antimicrob Agents Chemother 23:784–786[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045997-0
Loading
/content/journal/micro/10.1099/mic.0.045997-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed