1887

Abstract

The pathogenic fungus is a major cause of morbidity and mortality in immunocompromised individuals. Infection of the human host occurs through inhalation of infectious propagules following environmental exposure. In the lung, can reside in the extracellular environment of the alveolar spaces or, upon phagocytosis, it can survive and grow intracellularly within alveolar macrophages (AMs). In previous studies, we found that sphingosine kinase 1 (SK1) influenced the intracellular residency of within AMs. Therefore, with this study we aimed to examine the role of the SK1 lipid product, sphingosine-1-phosphate (S1P), in the AMs– interaction. It was found that extracellular S1P enhances the phagocytosis of by AMs. Using both genetic and pharmacological approaches we further show that extracellular S1P exerts its effect on the phagocytosis of by AMs through S1P receptor 2 (S1P2). Interestingly, loss of S1P2 caused a dramatic decrease in the mRNA levels of Fcγ receptors I (FcγRI), -II and -III. In conclusion, our data suggest that extracellular S1P increases antibody-mediated phagocytosis through S1P2 by regulating the expression of the phagocytic Fcγ receptors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045989-0
2011-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1416.html?itemId=/content/journal/micro/10.1099/mic.0.045989-0&mimeType=html&fmt=ahah

References

  1. Abadi J. , Pirofski L. . ( 1999; ). Antibodies reactive with the cryptococcal capsular polysaccharide glucuronoxylomannan are present in sera from children with and without human immunodeficiency virus infection. . J Infect Dis 180:, 915–919. [CrossRef] [PubMed]
    [Google Scholar]
  2. Abe K. , Yoshinaga M. , Ishimatsu Y. , Iwashita T. , Matsubara Y. , Maesaki S. , Tomono K. , Kadota J. , Kohno S. . ( 1998; ). [Cytokines produced by cells in bronchoalveolar lavage fluid from a patient with primary pulmonary cryptococcosis]. . Nihon Kokyuki Gakkai Zasshi 36:, 299–305 (in Japanese).[PubMed]
    [Google Scholar]
  3. Allende M. L. , Sasaki T. , Kawai H. , Olivera A. , Mi Y. , van Echten-Deckert G. , Hajdu R. , Rosenbach M. , Keohane C. A. et al. ( 2004; ). Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. . J Biol Chem 279:, 52487–52492. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ammit A. J. , Hastie A. T. , Edsall L. C. , Hoffman R. K. , Amrani Y. , Krymskaya V. P. , Kane S. A. , Peters S. P. , Penn R. B. et al. ( 2001; ). Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma. . FASEB J 15:, 1212–1214.[PubMed]
    [Google Scholar]
  5. Argraves K. M. , Gazzolo P. J. , Groh E. M. , Wilkerson B. A. , Matsuura B. S. , Twal W. O. , Hammad S. M. , Argraves W. S. . ( 2008; ). High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function. . J Biol Chem 283:, 25074–25081. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bianco C. , Griffin F. M. Jr , Silverstein S. C. . ( 1975; ). Studies of the macrophage complement receptor. Alteration of receptor function upon macrophage activation. . J Exp Med 141:, 1278–1290. [CrossRef] [PubMed]
    [Google Scholar]
  7. Buchanan K. L. , Murphy J. W. . ( 1997; ). Kinetics of cellular infiltration and cytokine production during the efferent phase of a delayed-type hypersensitivity reaction. . Immunology 90:, 189–197. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chiba K. . ( 2005; ). FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. . Pharmacol Ther 108:, 308–319. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chrétien F. , Lortholary O. , Kansau I. , Neuville S. , Gray F. , Dromer F. . ( 2002; ). Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. . J Infect Dis 186:, 522–530. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cox G. M. , McDade H. C. , Chen S. C. , Tucker S. C. , Gottfredsson M. , Wright L. C. , Sorrell T. C. , Leidich S. D. , Casadevall A. et al. ( 2001; ). Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans . . Mol Microbiol 39:, 166–175. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cox G. M. , Harrison T. S. , McDade H. C. , Taborda C. P. , Heinrich G. , Casadevall A. , Perfect J. R. . ( 2003; ). Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. . Infect Immun 71:, 173–180. [CrossRef] [PubMed]
    [Google Scholar]
  12. Daëron M. . ( 1997; ). Structural bases of FcγR functions. . Int Rev Immunol 16:, 1–27. [CrossRef] [PubMed]
    [Google Scholar]
  13. Deshaw M. , Pirofski L. A. . ( 1995; ). Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV individuals. . Clin Exp Immunol 99:, 425–432. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dromer F. , Perronne C. , Barge J. , Vilde J. L. , Yeni P. . ( 1989; ). Role of IgG and complement component C5 in the initial course of experimental cryptococcosis. . Clin Exp Immunol 78:, 412–417.[PubMed]
    [Google Scholar]
  15. Duong C. Q. , Bared S. M. , Abu-Khader A. , Buechler C. , Schmitz A. , Schmitz G. . ( 2004; ). Expression of the lysophospholipid receptor family and investigation of lysophospholipid-mediated responses in human macrophages. . Biochim Biophys Acta 1682:, 112–119.[PubMed] [CrossRef]
    [Google Scholar]
  16. Edsall L. C. , Spiegel S. . ( 1999; ). Enzymatic measurement of sphingosine 1-phosphate. . Anal Biochem 272:, 80–86. [CrossRef] [PubMed]
    [Google Scholar]
  17. Escárcega-Barbosa D. , Ortiz-Jiménez M. P. , Juárez-García J. , Miranda-Feria A. J. . ( 2002; ). [Hyper-IgM syndrome: mucocutaneous lesions and neutropenia]. . Rev Alerg Mex 49:, 57–59 (in Spanish).[PubMed]
    [Google Scholar]
  18. Feldmesser M. , Casadevall A. . ( 1997; ). Effect of serum IgG1 to Cryptococcus neoformans glucuronoxylomannan on murine pulmonary infection. . J Immunol 158:, 790–799.[PubMed]
    [Google Scholar]
  19. Feldmesser M. , Kress Y. , Novikoff P. , Casadevall A. . ( 2000; ). Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. . Infect Immun 68:, 4225–4237. [CrossRef] [PubMed]
    [Google Scholar]
  20. Garg S. K. , Volpe E. , Palmieri G. , Mattei M. , Galati D. , Martino A. , Piccioni M. S. , Valente E. , Bonanno E. et al. ( 2004; ). Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo. . J Infect Dis 189:, 2129–2138. [CrossRef] [PubMed]
    [Google Scholar]
  21. Garg S. K. , Santucci M. B. , Panitti M. , Pucillo L. , Bocchino M. , Okajima F. , Bisen P. S. , Saltini C. , Fraziano M. . ( 2006; ). Does sphingosine 1-phosphate play a protective role in the course of pulmonary tuberculosis?. Clin Immunol 121:, 260–264. [CrossRef] [PubMed]
    [Google Scholar]
  22. Goldman D. L. , Lee S. C. , Mednick A. J. , Montella L. , Casadevall A. . ( 2000; ). Persistent Cryptococcus neoformans pulmonary infection in the rat is associated with intracellular parasitism, decreased inducible nitric oxide synthase expression, and altered antibody responsiveness to cryptococcal polysaccharide. . Infect Immun 68:, 832–838. [CrossRef] [PubMed]
    [Google Scholar]
  23. Greco E. , Santucci M. B. , Sali M. , De Angelis F. R. , Papi M. , De Spirito M. , Delogu G. , Colizzi V. , Fraziano M. . ( 2010; ). Natural lysophospholipids reduce Mycobacterium tuberculosis-induced cytotoxicity and induce anti-mycobacterial activity by a phagolysosome maturation-dependent mechanism in A549 type II alveolar epithelial cells. . Immunology 129:, 125–132. [PubMed] [CrossRef]
    [Google Scholar]
  24. Hammad S. M. , Crellin H. G. , Wu B. X. , Melton J. , Anelli V. , Obeid L. M. . ( 2008; ). Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. . Prostaglandins Other Lipid Mediat 85:, 107–114. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hla T. , Lee M. J. , Ancellin N. , Paik J. H. , Kluk M. J. . ( 2001; ). Lysophospholipids–receptor revelations. . Science 294:, 1875–1878. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hornuss C. , Hammermann R. , Fuhrmann M. , Juergens U. R. , Racké K. . ( 2001; ). Human and rat alveolar macrophages express multiple EDG receptors. . Eur J Pharmacol 429:, 303–308. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hughes J. E. , Srinivasan S. , Lynch K. R. , Proia R. L. , Ferdek P. , Hedrick C. C. . ( 2008; ). Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. . Circ Res 102:, 950–958. [CrossRef] [PubMed]
    [Google Scholar]
  28. Ikeda H. , Satoh H. , Yanase M. , Inoue Y. , Tomiya T. , Arai M. , Tejima K. , Nagashima K. , Maekawa H. et al. ( 2003; ). Antiproliferative property of sphingosine 1-phosphate in rat hepatocytes involves activation of Rho via Edg-5. . Gastroenterology 124:, 459–469. [CrossRef] [PubMed]
    [Google Scholar]
  29. Jiang L. I. , Collins J. , Davis R. , Lin K. M. , DeCamp D. , Roach T. , Hsueh R. , Rebres R. A. , Ross E. M. et al. ( 2007; ). Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. . J Biol Chem 282:, 10576–10584. [CrossRef] [PubMed]
    [Google Scholar]
  30. Jo E. K. , Kim H. S. , Lee M. Y. , Iseki M. , Lee J. H. , Song C. H. , Park J. K. , Hwang T. J. , Kook H. . ( 2002; ). X-linked hyper-IgM syndrome associated with Cryptosporidium parvum and Cryptococcus neoformans infections: the first case with molecular diagnosis in Korea. . J Korean Med Sci 17:, 116–120.[PubMed] [CrossRef]
    [Google Scholar]
  31. Jolly P. S. , Rosenfeldt H. M. , Milstien S. , Spiegel S. . ( 2002; ). The roles of sphingosine-1-phosphate in asthma. . Mol Immunol 38:, 1239–1245. [CrossRef] [PubMed]
    [Google Scholar]
  32. Jolly P. S. , Bektas M. , Olivera A. , Gonzalez-Espinosa C. , Proia R. L. , Rivera J. , Milstien S. , Spiegel S. . ( 2004; ). Transactivation of sphingosine-1-phosphate receptors by FcϵRI triggering is required for normal mast cell degranulation and chemotaxis. . J Exp Med 199:, 959–970. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kechichian T. B. , Shea J. , Del Poeta M. . ( 2007; ). Depletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice. . Infect Immun 75:, 4792–4798. [CrossRef] [PubMed]
    [Google Scholar]
  34. Kono M. , Mi Y. , Liu Y. , Sasaki T. , Allende M. L. , Wu Y. P. , Yamashita T. , Proia R. L. . ( 2004; ). The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. . J Biol Chem 279:, 29367–29373. [CrossRef] [PubMed]
    [Google Scholar]
  35. Kozel T. R. , Pfrommer G. S. . ( 1986; ). Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. . Infect Immun 52:, 1–5.[PubMed]
    [Google Scholar]
  36. Kusner D. J. . ( 2005; ). Mechanisms of mycobacterial persistence in tuberculosis. . Clin Immunol 114:, 239–247. [CrossRef] [PubMed]
    [Google Scholar]
  37. Levitz S. M. . ( 2002; ). Receptor-mediated recognition of Cryptococcus neoformans . . Nippon Ishinkin Gakkai Zasshi 43:, 133–136. [CrossRef] [PubMed]
    [Google Scholar]
  38. Levitz S. M. , Tabuni A. , Kozel T. R. , MacGill R. S. , Ingalls R. R. , Golenbock D. T. . ( 1997; ). Binding of Cryptococcus neoformans to heterologously expressed human complement receptors. . Infect Immun 65:, 931–935.[PubMed]
    [Google Scholar]
  39. Levitz S. M. , Nong S. H. , Seetoo K. F. , Harrison T. S. , Speizer R. A. , Simons E. R. . ( 1999; ). Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. . Infect Immun 67:, 885–890.[PubMed]
    [Google Scholar]
  40. Luberto C. , Martinez-Mariño B. , Taraskiewicz D. , Bolaños B. , Chitano P. , Toffaletti D. L. , Cox G. M. , Perfect J. R. , Hannun Y. A. et al. ( 2003; ). Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans . . J Clin Invest 112:, 1080–1094.[PubMed] [CrossRef]
    [Google Scholar]
  41. Malik Z. A. , Denning G. M. , Kusner D. J. . ( 2000; ). Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduced phagosome–lysosome fusion and increased survival within human macrophages. . J Exp Med 191:, 287–302. [CrossRef] [PubMed]
    [Google Scholar]
  42. McQuiston T. , Luberto C. , Del Poeta M. . ( 2010; ). Role of host sphingosine kinase 1 in the lung response against cryptococcosis. . Infect Immun 78:, 2342–2352. [CrossRef] [PubMed]
    [Google Scholar]
  43. Monari C. , Bistoni F. , Casadevall A. , Pericolini E. , Pietrella D. , Kozel T. R. , Vecchiarelli A. . ( 2005; ). Glucuronoxylomannan, a microbial compound, regulates expression of costimulatory molecules and production of cytokines in macrophages. . J Infect Dis 191:, 127–137. [CrossRef] [PubMed]
    [Google Scholar]
  44. Mukherjee S. , Lee S. , Mukherjee J. , Scharff M. D. , Casadevall A. . ( 1994; ). Monoclonal antibodies to Cryptococcus neoformans capsular polysaccharide modify the course of intravenous infection in mice. . Infect Immun 62:, 1079–1088.[PubMed]
    [Google Scholar]
  45. Mukherjee S. , Lee S. C. , Casadevall A. . ( 1995; ). Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages. . Infect Immun 63:, 573–579.[PubMed]
    [Google Scholar]
  46. Mukherjee S. , Feldmesser M. , Casadevall A. . ( 1996; ). J774 murine macrophage-like cell interactions with Cryptococcus neoformans in the presence and absence of opsonins. . J Infect Dis 173:, 1222–1231.[PubMed] [CrossRef]
    [Google Scholar]
  47. Netski D. , Kozel T. R. . ( 2002; ). Fc-dependent and Fc-independent opsonization of Cryptococcus neoformans by anticapsular monoclonal antibodies: importance of epitope specificity. . Infect Immun 70:, 2812–2819. [CrossRef] [PubMed]
    [Google Scholar]
  48. Nimmerjahn F. , Bruhns P. , Horiuchi K. , Ravetch J. V. . ( 2005; ). FcγRIV: a novel FcR with distinct IgG subclass specificity. . Immunity 23:, 41–51. [CrossRef] [PubMed]
    [Google Scholar]
  49. Okamoto H. , Takuwa N. , Yokomizo T. , Sugimoto N. , Sakurada S. , Shigematsu H. , Takuwa Y. . ( 2000; ). Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. . Mol Cell Biol 20:, 9247–9261. [CrossRef] [PubMed]
    [Google Scholar]
  50. Osada M. , Yatomi Y. , Ohmori T. , Ikeda H. , Ozaki Y. . ( 2002; ). Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. . Biochem Biophys Res Commun 299:, 483–487. [CrossRef] [PubMed]
    [Google Scholar]
  51. Park B. J. , Wannemuehler K. A. , Marston B. J. , Govender N. , Pappas P. G. , Chiller T. M. . ( 2009; ). Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. . AIDS 23:, 525–530. [CrossRef] [PubMed]
    [Google Scholar]
  52. Ravetch J. V. , Bolland S. . ( 2001; ). IgG Fc receptors. . Annu Rev Immunol 19:, 275–290. [CrossRef] [PubMed]
    [Google Scholar]
  53. Rittershaus P. C. , Kechichian T. B. , Allegood J. C. , Merrill A. H. Jr , Hennig M. , Luberto C. , Del Poeta M. . ( 2006; ). Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans . . J Clin Invest 116:, 1651–1659. [CrossRef] [PubMed]
    [Google Scholar]
  54. Rivera J. , Proia R. L. , Olivera A. . ( 2008; ). The alliance of sphingosine-1-phosphate and its receptors in immunity. . Nat Rev Immunol 8:, 753–763. [CrossRef] [PubMed]
    [Google Scholar]
  55. Sali M. , Delogu G. , Greco E. , Rocca S. , Colizzi V. , Fadda G. , Fraziano M. . ( 2009; ). Exploiting immunotherapy in Mycobacterium tuberculosis-infected mice: sphingosine 1-phosphate treatment results in a protective or detrimental effect depending on the stage of infection. . Int J Immunopathol Pharmacol 22:, 175–181.[PubMed]
    [Google Scholar]
  56. Sanchez T. , Skoura A. , Wu M. T. , Casserly B. , Harrington E. O. , Hla T. . ( 2007; ). Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. . Arterioscler Thromb Vasc Biol 27:, 1312–1318. [CrossRef] [PubMed]
    [Google Scholar]
  57. Santucci M. B. , Greco E. , De Spirito M. , Arcovito G. , De Angelis G. , Cauda R. , Fraziano M. . ( 2007; ). Sphingosine 1-phosphate promotes antigen processing and presentation to CD4+ T cells in Mycobacterium tuberculosis-infected monocytes. . Biochem Biophys Res Commun 361:, 687–693. [CrossRef] [PubMed]
    [Google Scholar]
  58. Schwab S. R. , Pereira J. P. , Matloubian M. , Xu Y. , Huang Y. , Cyster J. G. . ( 2005; ). Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. . Science 309:, 1735–1739. [CrossRef] [PubMed]
    [Google Scholar]
  59. Shapiro S. , Beenhouwer D. O. , Feldmesser M. , Taborda C. , Carroll M. C. , Casadevall A. , Scharff M. D. . ( 2002; ). Immunoglobulin G monoclonal antibodies to Cryptococcus neoformans protect mice deficient in complement component C3. . Infect Immun 70:, 2598–2604. [CrossRef] [PubMed]
    [Google Scholar]
  60. Shea J. M. , Kechichian T. B. , Luberto C. , Del Poeta M. . ( 2006; ). The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. . Infect Immun 74:, 5977–5988. [CrossRef] [PubMed]
    [Google Scholar]
  61. Singer I. I. , Tian M. , Wickham L. A. , Lin J. , Matheravidathu S. S. , Forrest M. J. , Mandala S. , Quackenbush E. J. . ( 2005; ). Sphingosine-1-phosphate agonists increase macrophage homing, lymphocyte contacts, and endothelial junctional complex formation in murine lymph nodes. . J Immunol 175:, 7151–7161.[PubMed] [CrossRef]
    [Google Scholar]
  62. Snider A. J. , Kawamori T. , Bradshaw S. G. , Orr K. A. , Gilkeson G. S. , Hannun Y. A. , Obeid L. M. . ( 2009; ). A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. . FASEB J 23:, 143–152. [CrossRef] [PubMed]
    [Google Scholar]
  63. Taborda C. P. , Casadevall A. . ( 2002; ). CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans . . Immunity 16:, 791–802. [CrossRef] [PubMed]
    [Google Scholar]
  64. Thompson C. R. , Iyer S. S. , Melrose N. , VanOosten R. , Johnson K. , Pitson S. M. , Obeid L. M. , Kusner D. J. . ( 2005; ). Sphingosine kinase 1 (SK1) is recruited to nascent phagosomes in human macrophages: inhibition of SK1 translocation by Mycobacterium tuberculosis . . J Immunol 174:, 3551–3561.[PubMed] [CrossRef]
    [Google Scholar]
  65. Vecchiarelli A. , Pietrella D. , Dottorini M. , Monari C. , Retini C. , Todisco T. , Bistoni F. . ( 1994; ). Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. . Clin Exp Immunol 98:, 217–223. [CrossRef] [PubMed]
    [Google Scholar]
  66. Voelz K. , Lammas D. A. , May R. C. . ( 2009; ). Cytokine signaling regulates the outcome of intracellular macrophage parasitism by Cryptococcus neoformans . . Infect Immun 77:, 3450–3457. [CrossRef] [PubMed]
    [Google Scholar]
  67. Vora K. A. , Nichols E. , Porter G. , Cui Y. , Keohane C. A. , Hajdu R. , Hale J. , Neway W. , Zaller D. , Mandala S. . ( 2005; ). Sphingosine 1-phosphate receptor agonist FTY720-phosphate causes marginal zone B cell displacement. . J Leukoc Biol 78:, 471–480. [CrossRef] [PubMed]
    [Google Scholar]
  68. Weigert A. , Weis N. , Brüne B. . ( 2009; ). Regulation of macrophage function by sphingosine-1-phosphate. . Immunobiology 214:, 748–760. [CrossRef] [PubMed]
    [Google Scholar]
  69. Wright L. C. , Santangelo R. M. , Ganendren R. , Payne J. , Djordjevic J. T. , Sorrell T. C. . ( 2007; ). Cryptococcal lipid metabolism: phospholipase B1 is implicated in transcellular metabolism of macrophage-derived lipids. . Eukaryot Cell 6:, 37–47. [CrossRef] [PubMed]
    [Google Scholar]
  70. Xing D. , Hage F. G. , Chen Y. F. , McCrory M. A. , Feng W. , Skibinski G. A. , Majid-Hassan E. , Oparil S. , Szalai A. J. . ( 2008; ). Exaggerated neointima formation in human C-reactive protein transgenic mice is IgG Fc receptor type I (FcγRI)-dependent. . Am J Pathol 172:, 22–30. [CrossRef] [PubMed]
    [Google Scholar]
  71. Yatomi Y. , Igarashi Y. , Yang L. , Hisano N. , Qi R. , Asazuma N. , Satoh K. , Ozaki Y. , Kume S. . ( 1997; ). Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. . J Biochem 121:, 969–973.[PubMed] [CrossRef]
    [Google Scholar]
  72. Yauch L. E. , Mansour M. K. , Levitz S. M. . ( 2005; ). Receptor-mediated clearance of Cryptococcus neoformans capsular polysaccharide in vivo . . Infect Immun 73:, 8429–8432. [CrossRef] [PubMed]
    [Google Scholar]
  73. Yokoo E. , Yatomi Y. , Takafuta T. , Osada M. , Okamoto Y. , Ozaki Y. . ( 2004; ). Sphingosine 1-phosphate inhibits migration of RBL-2H3 cells via S1P2: cross-talk between platelets and mast cells. . J Biochem 135:, 673–681. [CrossRef] [PubMed]
    [Google Scholar]
  74. Zaragoza O. , Chrisman C. J. , Castelli M. V. , Frases S. , Cuenca-Estrella M. , Rodríguez-Tudela J. L. , Casadevall A. . ( 2008; ). Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. . Cell Microbiol 10:, 2043–2057. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045989-0
Loading
/content/journal/micro/10.1099/mic.0.045989-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error