1887

Abstract

There are six essential genes in the genome which encode proteins bearing the tetratricopeptide repeat (TPR) domain that mediates protein–protein interaction. Thus far, the function of one of them, , remains unknown. Our conditional mutants of display osmoremedial temperature sensitivity, hypersensitivity to both Calcofluor White and low concentrations of SDS, and osmoremedial caffeine sensitivity. These are hallmarks of mutants that display cell wall defects. Accordingly we rename the gene as (ssential for aintenance of the cell all). Loss of Emw1p function is not associated with abrogation of the cell wall integrity (CWI) MAP kinase cascade. Instead, mutants activate this cascade even at permissive temperature, indicating that loss of Emw1p function does not cause a defect in sensors and effectors of cell wall signalling, but leads to a cell wall defect directly. Constitutive activation of the CWI cascade is reflected by the overproduction of chitin by mutants, a compensatory response frequently displayed by cell wall mutants. Growth is restored to mutants incubated at otherwise non-permissive temperature when is overexpressed. encodes the hexosephosphate aminotransferase that catalyses the rate-limiting step in the pathway that synthesizes the chitin precursor UDP-GlcNAc. The possibility that Emw1p is required for function of Gfa1p was ruled out, because the phenotype persists when the requirement for Gfa1p is bypassed. Furthermore, if loss of Emw1p function leads to loss of function of Gfa1p, then chitin synthesis would be diminished. Instead, a stimulation of the synthesis of this polymer is detected. Consequently, the defect associated with mutants may be associated with compromise in one of the remaining processes that depend on UDP-GlcNAc, namely -glycosylation or glycosylphosphatidylinositol (GPI)-anchor synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045971-0
2011-04-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1032.html?itemId=/content/journal/micro/10.1099/mic.0.045971-0&mimeType=html&fmt=ahah

References

  1. Bulik, D. A., Olczak, M., Lucero, H. A., Osmond, B. C., Robbins, P. W. & Specht, C. A. ( 2003; ). Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot Cell 2, 886–900.[CrossRef]
    [Google Scholar]
  2. Castrejon, F., Gomez, A., Sanz, M., Duran, A. & Roncero, C. ( 2006; ). The RIM101 pathway contributes to yeast cell wall assembly and its function becomes essential in the absence of mitogen-activated protein kinase Slt2p. Eukaryot Cell 5, 507–517.[CrossRef]
    [Google Scholar]
  3. Copic, A., Dorrington, M., Pagant, S., Barry, J., Lee, M. C., Singh, I., Hartman, J. L., IV & Miller, E. A. ( 2009; ). Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modification and quality control. Genetics 182, 757–769.[CrossRef]
    [Google Scholar]
  4. Cyert, M. S., Kunisawa, R., Kaim, D. & Thorner, J. ( 1991; ). Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc Natl Acad Sci U S A 88, 7376–7380.[CrossRef]
    [Google Scholar]
  5. D'Andrea, L. D. & Regan, L. ( 2003; ). TPR proteins: the versatile helix. Trends Biochem Sci 28, 655–662.[CrossRef]
    [Google Scholar]
  6. Davierwala, A. P., Haynes, J., Li, Z., Brost, R. L., Robinson, M. D., Yu, L., Mnaimneh, S., Ding, H., Zhu, H. & other authors ( 2005; ). The synthetic genetic interaction spectrum of essential genes. Nat Genet 37, 1147–1152.[CrossRef]
    [Google Scholar]
  7. de Groot, P. W., Ruiz, C., Vázquez de Aldana, C. R., Duenas, E., Cid, V. J., Del Rey, F., Rodríquez-Peña, J. M., Pérez, P., Andel, A. & other authors ( 2001; ). A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2, 124–142.[CrossRef]
    [Google Scholar]
  8. Fenton, C., Xu, H., Petersen, E. I., Petersen, S. B. & el-Gewely, M. R. ( 2002; ). Random mutagenesis for protein breeding. Methods Mol Biol 182, 231–241.
    [Google Scholar]
  9. Fujita, M., Yoko-o, T., Okamoto, M. & Jigami, Y. ( 2004; ). GPI7 involved in glycosylphosphatidylinositol biosynthesis is essential for yeast cell separation. J Biol Chem 279, 51869–51879.[CrossRef]
    [Google Scholar]
  10. García-Rodriguez, L. J., Durán, A. & Roncero, C. ( 2000; ). Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions. J Bacteriol 182, 2428–2437.[CrossRef]
    [Google Scholar]
  11. Geiduschek, E. P. & Kassavetis, G. A. ( 2001; ). The RNA polymerase III transcription apparatus. J Mol Biol 310, 1–26.[CrossRef]
    [Google Scholar]
  12. Gietz, R. D. & Sugino, A. ( 1988; ). New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534.[CrossRef]
    [Google Scholar]
  13. Goldstein, A. L. & McCusker, J. H. ( 1999; ). Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553.[CrossRef]
    [Google Scholar]
  14. Grigoriev, A. ( 2003; ). On the number of protein–protein interactions in the yeast proteome. Nucleic Acids Res 31, 4157–4161.[CrossRef]
    [Google Scholar]
  15. Hazbun, T. R., Malmström, L., Anderson, S., Graczyk, B. J., Fox, B., Riffle, M., Sundin, B. A., Aranda, J. D., McDonald, W. H. & Chiu, C.-H. ( 2003; ). Assigning function to yeast proteins by integration of technologies. Mol Cell 12, 1353–1365.[CrossRef]
    [Google Scholar]
  16. Hu, B., Liao, C., Millson, S. H., Mollapour, M., Prodromou, C., Pearl, L. H., Piper, P. W. & Panaretou, B. ( 2005; ). Qri2/Nse4, a component of the essential Smc5/6 DNA repair complex. Mol Microbiol 55, 1735–1750.[CrossRef]
    [Google Scholar]
  17. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. & O'Shea, E. K. ( 2003; ). Global analysis of protein localization in budding yeast. Nature 425, 686–691.[CrossRef]
    [Google Scholar]
  18. Jung, U. S. & Levin, D. E. ( 1999; ). Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34, 1049–1057.[CrossRef]
    [Google Scholar]
  19. Jung, U. S., Sobering, A. K., Romeo, M. J. & Levin, D. E. ( 2002; ). Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Mol Microbiol 46, 781–789.[CrossRef]
    [Google Scholar]
  20. Karpenahalli, M. R., Lupas, A. N. & Söding, J. ( 2007; ). TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. BMC Bioinformatics 8, 2.[CrossRef]
    [Google Scholar]
  21. Klis, F. M., Boorsma, A. & De Groot, P. W. ( 2006; ). Cell wall construction in Saccharomyces cerevisiae. Yeast 23, 185–202.[CrossRef]
    [Google Scholar]
  22. Kumar, A., Agarwal, S., Heyman, J. A., Matson, S., Heidtman, M., Piccirillo, S., Umansky, L., Drawid, A., Jansen, R. & other authors ( 2002; ). Subcellular localization of the yeast proteome. Genes Dev 16, 707–719.[CrossRef]
    [Google Scholar]
  23. Legrain, P., Chapon, C. & Galisson, F. ( 1991; ). Proteins involved in mitosis, RNA synthesis and premRNA splicing share a common repeating motif. Nucleic Acids Res 19, 2509–2510.[CrossRef]
    [Google Scholar]
  24. Lenardon, M. D., Munro, C. A. & Gow, N. A. ( 2010; ). Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13, 416–423.[CrossRef]
    [Google Scholar]
  25. Levin, D. E. ( 2005; ). Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69, 262–291.[CrossRef]
    [Google Scholar]
  26. Matheos, D. P., Kingsbury, T. J., Ahsan, U. S. & Cunningham, K. W. ( 1997; ). Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev 11, 3445–3458.[CrossRef]
    [Google Scholar]
  27. Morsomme, P. & Riezman, H. ( 2002; ). The Rab GTPase Ypt1p and tethering factors couple protein sorting at the ER to vesicle targeting to the Golgi apparatus. Dev Cell 2, 307–317.[CrossRef]
    [Google Scholar]
  28. Nishikawa, S. I., Fewell, S. W., Kato, Y., Brodsky, J. L. & Endo, T. ( 2001; ). Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153, 1061–1070.[CrossRef]
    [Google Scholar]
  29. Orlean, P. ( 1997; ). Biogenesis of yeast wall and surface components. In Molecular Cellular Biology of the Yeast Saccharomyces cerevisiae, pp. 229–362. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  30. Orlean, P. & Menon, A. K. ( 2007; ). Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48, 993–1011.[CrossRef]
    [Google Scholar]
  31. Panaretou, B., Prodromou, C., Roe, S. M., O'Brien, R., Ladbury, J. E., Piper, P. W. & Pearl, L. H. ( 1998; ). ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17, 4829–4836.[CrossRef]
    [Google Scholar]
  32. Pardo, M., Monteoliva, L., Vázquez, P., Martínez, R., Molero, G., Nombela, C. & Gil, C. ( 2004; ). PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology 150, 4157–4170.[CrossRef]
    [Google Scholar]
  33. Peñalva, M. A. & Arst, H. N., Jr ( 2002; ). Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66, 426–446.[CrossRef]
    [Google Scholar]
  34. Peters, J. M. ( 2006; ). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7, 644–656.
    [Google Scholar]
  35. Phelan, J. P., Millson, S. H., Parker, P. J., Piper, P. W. & Cooke, F. T. ( 2006; ). Fab1p and AP-1 are required for trafficking of endogenously ubiquitylated cargoes to the vacuole lumen in S. cerevisiae. J Cell Sci 119, 4225–4234.[CrossRef]
    [Google Scholar]
  36. Ram, A. F. & Klis, F. M. ( 2006; ). Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc 1, 2253–2256.[CrossRef]
    [Google Scholar]
  37. Rose, M. D., Winston, F. & Hieter, P. ( 1990; ). Methods in Yeast Genetics: a Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  38. Rubin, D. M., Glickman, M. H., Larsen, C. N., Dhruvakumar, S. & Finley, D. ( 1998; ). Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 17, 4909–4919.[CrossRef]
    [Google Scholar]
  39. Santos, M. & de Larrinoa, I. F. ( 2005; ). Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor. Curr Genet 48, 88–100.[CrossRef]
    [Google Scholar]
  40. Sikorski, R. S., Boguski, M. S., Goebl, M. & Hieter, P. ( 1990; ). A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60, 307–317.[CrossRef]
    [Google Scholar]
  41. Sobering, A. K., Watanabe, R., Romeo, M. J., Yan, B. C., Specht, C. A., Orlean, P., Riezman, H. & Levin, D. E. ( 2004; ). Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER. Cell 117, 637–648.[CrossRef]
    [Google Scholar]
  42. Stathopoulos, A. M. & Cyert, M. S. ( 1997; ). Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11, 3432–3444.[CrossRef]
    [Google Scholar]
  43. Verma, R., Aravind, L., Oania, R., McDonald, W. H., Yates, J. R., III, Koonin, E. V. & Deshaies, R. J. ( 2002; ). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615.[CrossRef]
    [Google Scholar]
  44. Watzele, G. & Tanner, W. ( 1989; ). Cloning of the glutamine : fructose-6-phosphate amidotransferase gene from yeast. Pheromonal regulation of its transcription. J Biol Chem 264, 8753–8758.
    [Google Scholar]
  45. Whelan, W. L. & Ballou, C. E. ( 1975; ). Sporulation in d-glucosamine auxotrophs of Saccharomyces cerevisiae: meiosis with defective ascospore wall formation. J Bacteriol 124, 1545–1557.
    [Google Scholar]
  46. Zhao, J., Kessler, M., Helmling, S., O'Connor, J. P. & Moore, C. ( 1999; ). Pta1, a component of yeast CF II, is required for both cleavage and poly(A) addition of mRNA precursor. Mol Cell Biol 19, 7733–7740.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045971-0
Loading
/content/journal/micro/10.1099/mic.0.045971-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error