Effect of pyruvate on the metabolic regulation of nitrogenase activity in in darkness Free

Abstract

, a photosynthetic diazotroph, is able to regulate nitrogenase activity in response to environmental factors such as ammonium ions or darkness, the so-called switch-off effect. This is due to reversible modification of the Fe-protein, one of the two components of nitrogenase. The signal transduction pathway(s) in this regulatory mechanism is not fully understood, especially not in response to darkness. We have previously shown that the switch-off response and metabolic state differ between cells grown with dinitrogen or glutamate as the nitrogen source, although both represent poor nitrogen sources. In this study we show that pyruvate affects the response to darkness in cultures grown with glutamate as nitrogen source, leading to a response similar to that in cultures grown with dinitrogen. The effects are related to P protein uridylylation and glutamine synthetase activity. We also show that pyruvate induces protein synthesis and that inhibition of pyruvate formate-lyase leads to loss of nitrogenase activity in the dark.

Funding
This study was supported by the:
  • Carl Tryggers Foundation
  • Swedish Research Council
  • Fundação para a Ciência e a Tecnologia, Portugal (Award SFRH/BD/23183/2005)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045831-0
2011-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1834.html?itemId=/content/journal/micro/10.1099/mic.0.045831-0&mimeType=html&fmt=ahah

References

  1. Becker A., Kabsch W. ( 2002). X-ray structure of pyruvate formate-lyase in complex with pyruvate and CoA. How the enzyme uses the Cys-418 thiyl radical for pyruvate cleavage. J Biol Chem 277:40036–40042 [View Article][PubMed]
    [Google Scholar]
  2. Brush E. J., Lipsett K. A., Kozarich J. W. ( 1988). Inactivation of Escherichia coli pyruvate formate-lyase by hypophosphite: evidence for a rate-limiting phosphorus-hydrogen bond cleavage. Biochemistry 27:2217–2222 [View Article][PubMed]
    [Google Scholar]
  3. Clark D. P. ( 1989). The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 5:223–234 [View Article][PubMed]
    [Google Scholar]
  4. Crewther W. G. ( 1956). The inhibition of formic dehydrogenase and formic hydrogenlyase systems of Escherichia coli by hypophosphite. Biochim Biophys Acta 21:178–180 [View Article][PubMed]
    [Google Scholar]
  5. Dixon R., Kahn D. ( 2004). Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631 [View Article][PubMed]
    [Google Scholar]
  6. Edgren T., Nordlund S. ( 2006). Two pathways of electron transport to nitrogenase in Rhodospirillum rubrum: the major pathway is dependent on the fix gene products. FEMS Microbiol Lett 260:30–35 [View Article][PubMed]
    [Google Scholar]
  7. Gest H. ( 1951). Metabolic patterns in photosynthetic bacteria. Bacteriol Rev 15:183–210[PubMed]
    [Google Scholar]
  8. Gest H., Kamen M. D. ( 1949). Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109:558–559 [View Article][PubMed]
    [Google Scholar]
  9. Gorrell T. E., Uffen R. L. ( 1977). Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness. J Bacteriol 131:533–543[PubMed]
    [Google Scholar]
  10. Jonsson A., Nordlund S. ( 2007). In vitro studies of the uridylylation of the three PII protein paralogs from Rhodospirillum rubrum: the transferase activity of R. rubrum GlnD is regulated by α-ketoglutarate and divalent cations but not by glutamine. J Bacteriol 189:3471–3478 [View Article][PubMed]
    [Google Scholar]
  11. Jonsson A., Teixeira P. F., Nordlund S. ( 2007). The activity of adenylyltransferase in Rhodospirillum rubrum is only affected by α-ketoglutarate and unmodified PII proteins, but not by glutamine, in vitro. FEBS J 274:2449–2460 [View Article][PubMed]
    [Google Scholar]
  12. Jonsson A., Nordlund S., Teixeira P. F. ( 2009). Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE. Res Microbiol 160:581–584 [View Article][PubMed]
    [Google Scholar]
  13. Jungermann K., Schön G. ( 1974). Pyruvate formate lyase in Rhodospirillum rubrum Ha adapted to anaerobic dark conditions. Arch Microbiol 99:109–116 [View Article][PubMed]
    [Google Scholar]
  14. Kanemoto R. H., Ludden P. W. ( 1984). Effect of ammonia, darkness, and phenazine methosulfate on whole-cell nitrogenase activity and Fe protein modification in Rhodospirillum rubrum. J Bacteriol 158:713–720[PubMed]
    [Google Scholar]
  15. Knappe J., Neugebauer F. A., Blaschkowski H. P., Gänzler M. ( 1984). Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci U S A 81:1332–1335 [View Article][PubMed]
    [Google Scholar]
  16. Lehtiö L., Leppänen V. M., Kozarich J. W., Goldman A. ( 2002). Structure of Escherichia coli pyruvate formate-lyase with pyruvate. Acta Crystallogr D Biol Crystallogr 58:2209–2212 [View Article][PubMed]
    [Google Scholar]
  17. Liang J. H., Nielsen G. M., Lies D. P., Burris R. H., Roberts G. P., Ludden P. W. ( 1991). Mutations in the draT and draG genes of Rhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation. J Bacteriol 173:6903–6909[PubMed]
    [Google Scholar]
  18. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. ( 1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275[PubMed]
    [Google Scholar]
  19. Ludden P. W., Burris R. H. ( 1981). In vivo and in vitro studies on ATP and electron donors to nitrogenase in Rhodospirillum rubrum. Arch Microbiol 130:155–158 [View Article]
    [Google Scholar]
  20. Melchiorsen C. R., Jokumsen K. V., Villadsen J., Johnsen M. G., Israelsen H., Arnau J. ( 2000). Synthesis and posttranslational regulation of pyruvate formate-lyase in Lactococcus lactis. J Bacteriol 182:4783–4788 [View Article][PubMed]
    [Google Scholar]
  21. Merrick M. J., Edwards R. A. ( 1995). Nitrogen control in bacteria. Microbiol Rev 59:604–622[PubMed]
    [Google Scholar]
  22. Ninfa A. J., Jiang P. ( 2005). PII signal transduction proteins: sensors of α-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 8:168–173 [View Article][PubMed]
    [Google Scholar]
  23. Nordlund S., Ludden P. W. ( 2004). Post-translational regulation of nitrogenase in photosynthetic bacteria. Genetics and Regulation of Nitrogen Fixation in Free-Living Bacteria175–196 Klipp W., Masephol B., Gallon J. R., Newton W. E. The Netherlands: Kluwer Academic;
    [Google Scholar]
  24. Nordlund S., Kanemoto R. H., Murrell S. A., Ludden P. W. ( 1985). Properties and regulation of glutamine synthetase from Rhodospirillum rubrum. J Bacteriol 161:13–17[PubMed]
    [Google Scholar]
  25. Ormerod J. G., Ormerod K. S., Gest H. ( 1961). Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys 94:449–463 [View Article][PubMed]
    [Google Scholar]
  26. Rasmussen L. J., Møller P. L., Atlung T. ( 1991). Carbon metabolism regulates expression of the pfl (pyruvate formate-lyase) gene in Escherichia coli. J Bacteriol 173:6390–6397[PubMed]
    [Google Scholar]
  27. Rees D. C., Howard J. B. ( 2000). Nitrogenase: standing at the crossroads. Curr Opin Chem Biol 4:559–566 [View Article][PubMed]
    [Google Scholar]
  28. Sawers G., Suppmann B. ( 1992). Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins. J Bacteriol 174:3474–3478[PubMed]
    [Google Scholar]
  29. Teixeira P. F., Jonsson A., Frank M., Wang H., Nordlund S. ( 2008). Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio. Microbiology 154:2336–2347 [View Article][PubMed]
    [Google Scholar]
  30. Teixeira P. F., Wang H., Nordlund S. ( 2010). Nitrogenase switch-off and regulation of ammonium assimilation in response to light deprivation in Rhodospirillum rubrum are influenced by the nitrogen source used during growth. J Bacteriol 192:1463–1466 [View Article][PubMed]
    [Google Scholar]
  31. Voelskow H., Schön G. ( 1978). Pyruvate fermentation in light-grown cells of Rhodospirillum rubrum during adaptation to anaerobic dark conditions. Arch Microbiol 119:129–133 [View Article][PubMed]
    [Google Scholar]
  32. Wang H., Franke C. C., Nordlund S., Norén A. ( 2005). Reversible membrane association of dinitrogenase reductase activating glycohydrolase in the regulation of nitrogenase activity in Rhodospirillum rubrum; dependence on GlnJ and AmtB1. FEMS Microbiol Lett 253:273–279 [View Article][PubMed]
    [Google Scholar]
  33. Zhang Y., Pohlmann E. L., Ludden P. W., Roberts G. P. ( 2001). Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. J Bacteriol 183:6159–6168 [View Article][PubMed]
    [Google Scholar]
  34. Zhang Y., Pohlmann E. L., Roberts G. P. ( 2004). Identification of critical residues in GlnB for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci U S A 101:2782–2787 [View Article][PubMed]
    [Google Scholar]
  35. Zhang Y., Pohlmann E. L., Roberts G. P. ( 2005). GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. J Bacteriol 187:1254–1265 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045831-0
Loading
/content/journal/micro/10.1099/mic.0.045831-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed