1887

Abstract

Here, we report the characterization of 122 clinical isolates from three distinct geographical locations: Dartmouth Hitchcock Medical Center in New Hampshire, USA, the Charles T. Campbell Eye Microbiology Lab at the University of Pittsburgh Medical Center, USA, and the Aravind Eye Hospital in Madurai, India. We identified and located clustered regularly interspaced short palindromic repeats (CRISPR) in 45/122 clinical isolates and sequenced these CRISPR, finding that subtype CRISPR regions (33 %) were more prevalent than the CRISPR region subtype (6 %) in these clinical isolates. Further, we observed 132 unique spacers from these 45 CRISPR that are 100 % identical to prophages or sequenced temperate bacteriophage capable of becoming prophages. Most intriguingly, all of these 132 viral spacers matched to temperate bacteriophage/prophages capable of inserting into the host chromosome, but not to extrachromosomally replicating lytic bacteriophage. We next assessed the ability of the more prevalent subtype CRISPR regions to mediate resistance to bacteriophage infection or lysogeny by deleting the entire CRISPR region from sequenced strain UCBPP-PA14 and six clinical isolates. We found no change in CRISPR-mediated resistance to bacteriophage infection or lysogeny rate even for CRISPR with spacers 100 % identical to a region of the infecting bacteriophage. Lastly, to show these CRISPR and genes were expressed and functional, we demonstrated production of small CRISPR RNAs. This work provides both the first examination to our knowledge of CRISPR regions within clinical isolates and a collection of defined CRISPR-positive and -negative strains for further CRISPR and gene studies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045732-0
2011-02-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/430.html?itemId=/content/journal/micro/10.1099/mic.0.045732-0&mimeType=html&fmt=ahah

References

  1. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D., Horvath P.. 2007; CRISPR provides acquired resistance against viruses in prokaryotes. Science315:1709–1712
    [Google Scholar]
  2. Battle S. E., Meyer F., Rello J., Kung V., Hauser A.. 2008; Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol190:7130–7140
    [Google Scholar]
  3. Battle S. E., Rello J., Hauser A.. 2009; Genomic islands of Pseudomonas aeruginosa . FEMS Microbiol Lett290:70–78
    [Google Scholar]
  4. Bertani G.. 2004; Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol186:595–600
    [Google Scholar]
  5. Braid M. D., Silhavy J., Kitts C., Cano R., Howe M.. 2004; Complete genomic sequence of bacteriophage B3, a Mu-like phage of Pseudomonas aeruginosa . J Bacteriol186:6560–6574
    [Google Scholar]
  6. Brouns S. J., Jore M. M., Lundgren M., Westra E. R., Slijkhuis R. J., Snijders A. P., Dickman M. J., Makarova K. S., Koonin E. V., van der Oost J.. 2008; Small CRISPR RNAs guide antiviral defense in prokaryotes. Science321:960–964
    [Google Scholar]
  7. Brüssow H., Canchaya C., Hardt W.. 2004; Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev68:560–602
    [Google Scholar]
  8. Byrne M., Kropinski A.. 2005; The genome of the Pseudomonas aeruginosa generalized transducing bacteriophage F116. Gene346:187–194
    [Google Scholar]
  9. Chakraborty S., Snijders A., Chakravorty R., Ahmed M., Tarek A., Hossain M.. 2010; Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the horizontal transfer of CRISPR locus among bacteria. Mol Phylogenet Evol56:878–887
    [Google Scholar]
  10. Davis R., Botstein D., Roth J.. 1980; Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  11. Deveau H., Barrangou R., Garneau J., Labonté J., Fremaux C., Boyaval P., Romero D., Horvath P., Moineau S.. 2008; Phage response to CRISPR-encoded resistance in Streptococcus thermophilus . J Bacteriol190:1390–1400
    [Google Scholar]
  12. Díez-Villaseñor C., Almendros C., García-Martínez J., Mojica F.. 2010; Diversity of CRISPR loci in Escherichia coli . Microbiology156:1351–1361
    [Google Scholar]
  13. Edgar R., Qimron U.. 2010; The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. J Bacteriol192:6291–6294
    [Google Scholar]
  14. Haft D. H., Selengut J., Mongodin E., Nelson K.. 2005; A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput Biol1:e60
    [Google Scholar]
  15. Hale C. R., Zhao P., Olson S., Duff M., Graveley B., Wells L., Terns R., Terns M.. 2009; RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell139:945–956
    [Google Scholar]
  16. Haurwitz R. E., Jinek M., Wiedenheft B., Zhou K., Doudna J.. 2010; Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science329:1355–1358
    [Google Scholar]
  17. Hayden H. S., Gillett W., Saenphimmachak C., Lim R., Zhou Y., Jacobs M. A., Chang J., Rohmer L., D'Argenio D. A.. other authors 2008; Large-insert genome analysis technology detects structural variation in Pseudomonas aeruginosa clinical strains from cystic fibrosis patients. Genomics91:530–537
    [Google Scholar]
  18. Held N. L., Whitaker R.. 2009; Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol11:457–466
    [Google Scholar]
  19. Heo Y. J., Chung I., Choi K., Lau G., Cho Y.. 2007; Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology153:2885–2895
    [Google Scholar]
  20. Kropinski A. M.. 2000; Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. J Bacteriol182:6066–6074
    [Google Scholar]
  21. Lee F. K., Dudas K., Hanson J., Nelson M., LoVerde P., Apicella M.. 1999; The R-type pyocin of Pseudomonas aeruginosa C is a bacteriophage tail-like particle that contains single-stranded DNA. Infect Immun67:717–725
    [Google Scholar]
  22. Marraffini L. A., Sontheimer E.. 2008; CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science322:1843–1845
    [Google Scholar]
  23. Mojica F. J., Díez-Villaseñor C., García-Martínez J., Almendros C.. 2009; Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology155:733–740
    [Google Scholar]
  24. Nakayama K., Kanaya S., Ohnishi M., Terawaki Y., Hayashi T.. 1999; The complete nucleotide sequence of phi CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa : implications for phage evolution and horizontal gene transfer via bacteriophages. Mol Microbiol31:399–419
    [Google Scholar]
  25. Pougach K., Semenova E., Bogdanova E., Datsenko K., Djordjevic M., Wanner B., Severinov K.. 2010; Transcription, processing and function of CRISPR cassettes in Escherichia coli . Mol Microbiol77:1367–1379
    [Google Scholar]
  26. Roy P. H., Tetu S., Larouche A., Elbourne L., Tremblay S., Ren Q., Dodson R., Harkins D., Shay R.. other authors 2010; Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE5:e8842
    [Google Scholar]
  27. Shah S. A., Hansen N., Garrett R.. 2009; Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochem Soc Trans37:23–28
    [Google Scholar]
  28. Shanks R. M., Caiazza N., Hinsa S., Toutain C., O'Toole G.. 2006; Saccharomyces cerevisiae -based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol72:5027–5036
    [Google Scholar]
  29. Uchiyama J., Rashel M., Matsumoto T., Sumiyama Y., Wakiguchi H., Matsuzaki S.. 2009; Characteristics of a novel Pseudomonas aeruginosa bacteriophage, PAJU2, which is genetically related to bacteriophage D3. Virus Res139:131–134
    [Google Scholar]
  30. van der Oost J., Jore M., Westra E., Lundgren M., Brouns S.. 2009; CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci34:401–407
    [Google Scholar]
  31. Vestergaard G., Shah S., Bize A., Reitberger W., Reuter M., Phan H., Briegel A., Rachel R., Garrett R. A., Prangishvili D.. 2008; Stygiolobus rod-shaped virus and the interplay of crenarchaeal rudiviruses with the CRISPR antiviral system. J Bacteriol190:6837–6845
    [Google Scholar]
  32. Wang P. W., Chu L., Guttman D.. 2004; Complete sequence and evolutionary genomic analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112. J Bacteriol186:400–410
    [Google Scholar]
  33. Westra E. R., Pul U., Heidrich N., Jore M. M., Lundgren M., Stratmann T., Wurm R., Raine A., Mescher M.. other authors 2010; H-NS mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol77:1380–1393
    [Google Scholar]
  34. Winstanley C., Langille M., Fothergill J., Kukavica-Ibrulj I., Paradis-Bleau C., Sanschagrin F., Thomson N. R., Winsor G. L., Quail M. A.. other authors 2009; Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa . Genome Res19:12–23
    [Google Scholar]
  35. Zegans M. E., Wagner J., Cady K., Murphy D., Hammond J., O'Toole G.. 2009; Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa . J Bacteriol191:210–219
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045732-0
Loading
/content/journal/micro/10.1099/mic.0.045732-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error