1887

Abstract

To date, various bacterial drug efflux pump inhibitors (EPIs) have been described. They exhibit variability in their activity spectrum with respect to antibiotic structural class and bacterial species. Among the various 4-alkylaminoquinazoline derivatives synthesized and studied in this work, one molecule, 1167, increased the susceptibility of important human-pathogenic, resistant, Gram-negative bacteria towards different antibiotic classes. This 4-(3-morpholinopropylamino)-quinazoline induced an increase in the activity of chloramphenicol, nalidixic acid, norfloxacin and sparfloxacin, which are substrates of the AcrAB-TolC and MexAB-OprM efflux pumps that act in these multidrug-resistant isolates. In addition, 1167 increased the intracellular concentration of chloramphenicol in efflux pump-overproducing strains. The rate of restoration depended on the structure of the antibiotic, suggesting that different sites in the efflux pumps may be involved. A molecule exhibiting a morpholine functional group and a propyl extension of the side chain was more active.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045716-0
2011-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/566.html?itemId=/content/journal/micro/10.1099/mic.0.045716-0&mimeType=html&fmt=ahah

References

  1. Baitiche, M., Mahamoud, A., Benachour, D., Merbah, M. & Barbe, J. ( 2004; ). Synthesis of new quinazoline derivatives. Heterocycl Commun 10, 269–272.
    [Google Scholar]
  2. Blot, S., Depuydt, P., Vandewoude, K. & De Bacquer, D. ( 2007; ). Measuring the impact of multidrug resistance in nosocomial infection. Curr Opin Infect Dis 20, 391–396.[CrossRef]
    [Google Scholar]
  3. Chevalier, J., Pagès, J.-M., Eyraud, A. & Malléa, M. ( 2000; ). Membrane permeability modifications are involved in antibiotic resistance in Klebsiella pneumoniae. Biochem Biophys Res Commun 274, 496–499.[CrossRef]
    [Google Scholar]
  4. Chevalier, J., Mulfinger, C., Garnotel, E., Nicolas, P., Davin-Régli, A. & Pagès, J.-M. ( 2008; ). Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003. PLoS ONE 3, e3203.[CrossRef]
    [Google Scholar]
  5. Chevalier, J., Mahamoud, A., Baitiche, M., Adam, E., Viveiros, M., Smarandache, A., Militaru, A., Pascu, M. L., Amaral, L. & Pagès, J.-M. ( 2010; ). Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant strains. Int J Antimicrob Agents 36, 164–168.[CrossRef]
    [Google Scholar]
  6. Chollet, R., Chevalier, J., Bryskier, A. & Pagès, J.-M. ( 2004; ). The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob Agents Chemother 48, 3621–3624.[CrossRef]
    [Google Scholar]
  7. Chopra, I., Schofield, C., Everett, M., O'Neill, A., Miller, K., Wilcox, M., Frère, J. M., Dawson, J., Czaplewski, L. & other authors ( 2008; ). Treatment of health-care-associated infections caused by Gram-negative bacteria: a consensus statement. Lancet Infect Dis 8, 133–139.[CrossRef]
    [Google Scholar]
  8. Davin-Régli, A., Bolla, J. M., James, C. E., Lavigne, J. P., Chevalier, J., Garnotel, E., Molitor, A. & Pagès, J.-M. ( 2008; ). Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr Drug Targets 9, 750–759.[CrossRef]
    [Google Scholar]
  9. Eicher, T., Brandstätter, L. & Pos, K. M. ( 2009; ). Structural and functional aspects of the multidrug efflux pump AcrB. Biol Chem 390, 693–699.
    [Google Scholar]
  10. Falagas, M. E. & Bliziotis, I. A. ( 2007; ). Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents 29, 630–636.[CrossRef]
    [Google Scholar]
  11. Ghisalberti, D., Masi, M., Pagès, J.-M. & Chevalier, J. ( 2005; ). Chloramphenicol and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun 328, 1113–1118.[CrossRef]
    [Google Scholar]
  12. Li, X. Z. & Nikaido, H. ( 2009; ). Efflux-mediated drug resistance in bacteria: an update. Drugs 69, 1555–1623.[CrossRef]
    [Google Scholar]
  13. Lomovskaya, O. & Bostian, K. A. ( 2006; ). Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem Pharmacol 71, 910–918.[CrossRef]
    [Google Scholar]
  14. Lorenzi, V., Muselli, A., Bernardini, A. F., Berti, L., Pagès, J.-M., Amaral, L. & Bolla, J. M. ( 2009; ). A compound of Helichrysum italicum essential oil restores antibiotic activities on multi-drug resistant isolates from Gram-negative species. Antimicrob Agents Chemother 53, 2209–2211.[CrossRef]
    [Google Scholar]
  15. Mahamoud, A., Chevalier, J., Alibert-Franco, S., Kern, W. V. & Pagès, J.-M. ( 2007; ). Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother 59, 1223–1229.[CrossRef]
    [Google Scholar]
  16. Malléa, M., Chevalier, J., Bornet, C., Eyraud, A., Davin-Régli, A., Bollet, C. & Pagès, J.-M. ( 1998; ). Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology 144, 3003–3009.[CrossRef]
    [Google Scholar]
  17. Malléa, M., Chevalier, J., Eyraud, A. & Pagès, J.-M. ( 2002; ). Inhibitors of antibiotic efflux pump in resistant Enterobacter aerogenes strains. Biochem Biophys Res Commun 293, 1370–1373.[CrossRef]
    [Google Scholar]
  18. Murakami, S. ( 2008; ). Multidrug efflux transporter, AcrB – the pumping mechanism. Curr Opin Struct Biol 18, 459–465.[CrossRef]
    [Google Scholar]
  19. Nagano, K. & Nikaido, H. ( 2009; ). Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A 106, 5854–5858.[CrossRef]
    [Google Scholar]
  20. Nikaido, H. & Takatsuka, Y. ( 2009; ). Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794, 769–781.[CrossRef]
    [Google Scholar]
  21. Pagès, J.-M. & Amaral, L. ( 2009; ). Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta 1794, 826–833.[CrossRef]
    [Google Scholar]
  22. Pagès, J.-M., Lavigne, J. P., Leflon-Guibout, V., Marcon, E., Bert, F., Noussair, L. & Nicolas-Chanoine, M. H. ( 2009; ). Efflux pump, the masked side of β-lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS ONE 4, e4817.[CrossRef]
    [Google Scholar]
  23. Pagès, J.-M., Alibert-Franco, S., Mahamoud, A., Bolla, J. M., Davin-Régli, A., Chevalier, J. & Garnotel, E. ( 2010; ). Efflux pumps of Gram-negative bacteria, a new target for new molecules. Curr Top Med Chem 10, 1848–1857.[CrossRef]
    [Google Scholar]
  24. Piddock, L. J. ( 2006; ). Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19, 382–402.[CrossRef]
    [Google Scholar]
  25. Poole, K. ( 2007; ). Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39, 162–176.[CrossRef]
    [Google Scholar]
  26. Pos, K. M. ( 2009; ). Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta 1794, 782–793.[CrossRef]
    [Google Scholar]
  27. Takatsuka, Y., Chen, C. & Nikaido, H. ( 2010; ). Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A 107, 6559–6565.[CrossRef]
    [Google Scholar]
  28. Yu, E. W., McDermott, G., Zgurskaya, H. I., Nikaido, H. & Koshland, D. E., Jr ( 2003; ). Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300, 976–980.[CrossRef]
    [Google Scholar]
  29. Yu, E. W., Aires, J. R., McDermott, G. & Nikaido, H. ( 2005; ). A perisplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol 187, 6804–6815.[CrossRef]
    [Google Scholar]
  30. Yum, S., Xu, Y., Piao, S., Sim, S. H., Kim, H. M., Jo, W. S., Kim, K. J., Kweon, H. S., Jeong, M. H. & other authors ( 2009; ). Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J Mol Biol 387, 1286–1297.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045716-0
Loading
/content/journal/micro/10.1099/mic.0.045716-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error