1887

Abstract

, the causal agent of wheat head blight, shows intrinsic resistance to amine fungicides. It is commonly accepted that the amines target sterol C-14 reductase and sterol Δ–Δ isomerase of ergosterol biosynthesis, encoded by the genes and , respectively. Analysis of the genome sequence of revealed that the fungus contains two paralogous genes ( and ), which are homologous to the of . In this study, we disrupted and in . Compared to the wild-type strain HN9-1, and deletion mutants did not show recognizable phenotypic changes in mycelial growth on potato dextrose agar or in virulence on wheat heads. HPLC analysis showed that the amount of ergosterol in or deletion mutants was not significantly different from that in the wild-type strain. These results indicate that neither of the two genes is essential for growth, pathogenicity or ergosterol biosynthesis in . deletion mutants exhibited significantly increased sensitivity to amine fungicides, including tridemorph, fenpropidin and spiroxamine, but not to non-amine fungicides. In contrast, deletion mutants did not show changed sensitivity to any amine tested. The resistance of the deletion mutant to amines was restored by genetic complementation of the mutant with wild-type . These results indicate that controls the intrinsic resistance of to amines. The finding of this study provides new insights into amine resistance in filamentous fungi.

Funding
This study was supported by the:
  • Modern Agro-Industry Technology Research System
  • CNSF (Award 30900930)
  • Zhejiang Provincial Natural Science Foundation (Award Z3110057)
  • Ministry of Education
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045690-0
2011-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1665.html?itemId=/content/journal/micro/10.1099/mic.0.045690-0&mimeType=html&fmt=ahah

References

  1. Alcazar-Fuoli L., Mellado E., Garcia-Effron G., Lopez J. F., Grimalt J. O., Cuenca-Estrella J. M., Rodriguez-Tudela J. L. ( 2008). Ergosterol biosynthesis pathway in Aspergillus fumigatus . Steroids 73:339–347 [View Article][PubMed]
    [Google Scholar]
  2. Bai G. H., Shaner G. ( 1996). Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Dis 80:975–979 [View Article]
    [Google Scholar]
  3. Baloch R. I., Mercer E. I. ( 1987). Inhibition of sterol Δ8→Δ7 isomerase and Δ14-reductase by fenpropimorph, tridemorph, and fenpropidin in cell-free enzyme systems from Saccharomyces cerevisiae . Phytochemistry 26:663–668 [View Article]
    [Google Scholar]
  4. Baloch R. I., Mercer E. I., Wiggins T. E., Baldwin B. C. ( 1984). Inhibition of ergosterol biosynthesis in Saccharomyces cerevisiae and Ustilago maydis by tridemorph, fenpropimorph and fenpropidin. Phytochemistry 23:2219–2226 [View Article]
    [Google Scholar]
  5. Benveniste P. ( 1986). Sterol biosynthesis. Annu Rev Plant Physiol 37:275–308 [View Article]
    [Google Scholar]
  6. Blandino M., Minelli L., Reyneri A. ( 2006). Strategies for the chemical control of Fusarium head blight: effect on yield, alveographic parameters and deoxynivalenol contamination in winter wheat grain. Eur J Agron 25:193–201 [View Article]
    [Google Scholar]
  7. Chen C., Wang J., Luo Q., Yuan S., Zhou M. ( 2007). Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manag Sci 63:1201–1207 [View Article][PubMed]
    [Google Scholar]
  8. Crowley J. H., Tove S., Parks L. W. ( 1998). A calcium-dependent ergosterol mutant of Saccharomyces cerevisiae . Curr Genet 34:93–99 [View Article][PubMed]
    [Google Scholar]
  9. Cuomo C. A., Güldener U., Xu J. R., Trail F., Turgeon B. G., Di Pietro A., Walton J. D., Ma L. J., Baker S. E. et al. ( 2007). The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402 [View Article][PubMed]
    [Google Scholar]
  10. Da Silva Ferreira M. E., Colombo A. L., Paulsen I., Ren Q., Wortman J., Huang J., Goldman M. H., Goldman G. H. ( 2005). The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus . Med Mycol 43:Suppl. 1S313–S319 [View Article][PubMed]
    [Google Scholar]
  11. Davey M. L., Nybakken L., Kauserud H., Ohlson M. ( 2009). Fungal biomass associated with the phyllosphere of bryophytes and vascular plants. Mycol Res 113:1254–1260 [View Article][PubMed]
    [Google Scholar]
  12. Debieu D., Gall C., Gredt M., Bach J., Malosse C., Leroux P. ( 1992). Ergosterol biosynthesis and its inhibition by fenpropimorph in Fusarium species. Phytochemistry 31:1223–1233 [View Article]
    [Google Scholar]
  13. Debieu D., Bach J., Lasseron A., Malosse C., Leroux P. ( 1998). Effects of sterol biosynthesis inhibitors fungicides in the phytopathogenic fungus, Nectria haematococca: ergosterol depletion versus precursor or abnormal sterol accumulation as the mechanism of fungitoxicity. Pestic Sci 54:157–167 [View Article]
    [Google Scholar]
  14. Debieu D., Bach J., Arnold A., Brousset S., Gredt M., Taton M., Rahier A., Malosse C., Leroux P. ( 2000). Inhibition of ergosterol biosynthesis by morpholine, piperidine, and spiroketalamine fungicides in Microdochium nivale: effect on sterol composition and sterol Δ8,7-isomerase activity. Pestic Biochem Physiol 67:85–94 [View Article]
    [Google Scholar]
  15. Gooday G. W. ( 1995). Cell membrane. The Growing Fungus62–74 Gow N. A. R., Gadd G. M. London, UK: Chapman & Hall;
    [Google Scholar]
  16. Goswami R. S., Kistler H. C. ( 2004). Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525 [View Article][PubMed]
    [Google Scholar]
  17. Jia N., Arthington-Skaggs B., Lee W., Pierson C. A., Lees N. D., Eckstein J., Barbuch R., Bard M. ( 2002). Candida albicans sterol C-14 reductase, encoded by the ERG24 gene, as a potential antifungal target site. Antimicrob Agents Chemother 46:947–957 [View Article][PubMed]
    [Google Scholar]
  18. Kumar S., Nei M., Dudley J., Tamura K. ( 2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306 [View Article][PubMed]
    [Google Scholar]
  19. Lechoczki-Krsjak S., Toth B., Kotai C., Martonosi I., Farady L., Kondrak L., Szabo-Hever A., Mesterhazy A. ( 2008). Chemical control of FHB in wheat with different nozzle types and fungicides. Cereal Res Commun 36:677–681 [View Article]
    [Google Scholar]
  20. Lees N. D., Bard M., Kirsch D. R. ( 1999). Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae . Crit Rev Biochem Mol Biol 34:33–47[PubMed]
    [Google Scholar]
  21. Liu X. H., Lu J. P., Zhang L., Dong B., Min H., Lin F. C. ( 2007). Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell 6:997–1005 [View Article][PubMed]
    [Google Scholar]
  22. Liu X., Yin Y. N., Wu J. B., Jiang J. H., Ma Z. H. ( 2010). Identification and characterization of carbendazim-resistant isolates of Gibberella zeae . Plant Dis 94:1137–1142 [View Article]
    [Google Scholar]
  23. Liu X., Yu F. W., Schnabel G., Wu J. B., Wang Z. Y., Ma Z. H. ( 2011). Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genet Biol 48:113–123 [View Article][PubMed]
    [Google Scholar]
  24. Livak K. J., Schmittgen T. D. ( 2001). Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  25. Lorenz R. T., Parks L. W. ( 1991). Physiological effects of fenpropimorph on wild-type Saccharomyces cerevisiae and fenpropimorph-resistant mutants. Antimicrob Agents Chemother 35:1532–1537[PubMed] [CrossRef]
    [Google Scholar]
  26. Lorenz R. T., Parks L. W. ( 1992). Cloning, sequencing, and disruption of the gene encoding sterol C-14 reductase in Saccharomyces cerevisiae . DNA Cell Biol 11:685–692 [View Article][PubMed]
    [Google Scholar]
  27. Marcireau C., Guilloton M., Karst F. ( 1990). In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property. Antimicrob Agents Chemother 34:989–993[PubMed] [CrossRef]
    [Google Scholar]
  28. Marcireau C., Guyonnet D., Karst F. ( 1992). Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr Genet 22:267–272 [View Article][PubMed]
    [Google Scholar]
  29. McDonald B. A., Martinez J. P. ( 1990). Restriction fragment length polymorphisms in Septoria tritici occur at high frequency. Curr Genet 17:133–138 [View Article]
    [Google Scholar]
  30. Mellado E., Garcia-Effron G., Buitrago M. J., Alcazar-Fuoli L., Cuenca-Estrella M., Rodriguez-Tudela J. L. ( 2005). Targeted gene disruption of the 14-alpha sterol demethylase (cyp51A) in Aspergillus fumigatus and its role in azole drug susceptibility. Antimicrob Agents Chemother 49:2536–2538 [View Article][PubMed]
    [Google Scholar]
  31. Mercer E. I. ( 1991). Sterol biosynthesis inhibitors: their current status and modes of action. Lipids 26:584–597 [View Article][PubMed]
    [Google Scholar]
  32. Mullins E. D., Chen X., Romaine P., Raina R., Geiser D. M., Kang S. ( 2001). Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180 [View Article][PubMed]
    [Google Scholar]
  33. Schneegurt M. A., Henry M. ( 1992). Effects of piperalin and fenpropidin on sterol biosynthesis in Ustilago maydis . Pestic Biochem Physiol 43:45–52 [View Article]
    [Google Scholar]
  34. Schrick K., Mayer U., Horrichs A., Kuhnt C., Bellini C., Dangl J., Schmidt J., Jürgens G. ( 2000). FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev 14:1471–1484[PubMed]
    [Google Scholar]
  35. Shah Alam Bhuiyan M., Eckstein J., Barbuch R., Bard M. ( 2007). Synthetically lethal interactions involving loss of the yeast ERG24: the sterol C-14 reductase gene. Lipids 42:69–76 [View Article][PubMed]
    [Google Scholar]
  36. Snijders C. H. A. ( 2004). Resistance in wheat to Fusarium infection and trichothecene formation. Toxicol Lett 153:37–46 [View Article][PubMed]
    [Google Scholar]
  37. Starkey D. E., Ward T. J., Aoki T., Gale L. R., Kistler H. C., Geiser D. M., Suga H., Tóth B., Varga J., O’Donnell K. ( 2007). Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 44:1191–1204 [View Article][PubMed]
    [Google Scholar]
  38. Steel C. C., Baloch R. I., Mercer E. I., Baldwin B. C. ( 1989). The intracellular location and physiological effects of abnormal sterols in fungi growth in the presence of morpholine and functionally related fungicides. Pestic Biochem Physiol 33:101–111 [View Article]
    [Google Scholar]
  39. Taton M., Benveniste P., Rahier A. ( 1989). Microsomal Δ8,14-sterol Δ14-reductase in higher plants. Characterization and inhibition by analogues of a presumptive carbocationic intermediate of the reduction reaction. Eur J Biochem 185:605–614 [View Article][PubMed]
    [Google Scholar]
  40. Trail F. ( 2009). For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol 149:103–110 [View Article][PubMed]
    [Google Scholar]
  41. Walter S., Nicholson P., Doohan F. M. ( 2010). Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol 185:54–66 [View Article][PubMed]
    [Google Scholar]
  42. Wu A. B., Li H. P., Zhao C. S., Liao Y. C. ( 2005). Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations. Mycopathologia 160:75–83 [View Article][PubMed]
    [Google Scholar]
  43. Xu X., Nicholson P. ( 2009). Community ecology of fungal pathogens causing wheat head blight. Annu Rev Phytopathol 47:83–103 [View Article][PubMed]
    [Google Scholar]
  44. Yin Y., Liu X., Li B., Ma Z. ( 2009). Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology 99:487–497 [View Article][PubMed]
    [Google Scholar]
  45. Ziogas B. N., Oesterhelt G., Masner P., Steel C. C., Furter R. ( 1991). Fenpropimorph: a three site inhibitor of ergosterol biosynthesis in Nectria haematococca var. cucurbitae . Pestic Biochem Physiol 39:74–83 [View Article]
    [Google Scholar]
  46. Zocco D., Fontaine J., Lozanova E., Renard L., Bivort C., Durand R., Grandmougin-Ferjani A., Declerck S. ( 2008). Effects of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) on the development of an arbuscular mycorrhizal fungus. Mycol Res 112:592–601 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045690-0
Loading
/content/journal/micro/10.1099/mic.0.045690-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error