1887

Abstract

colonization of the respiratory tract is an essential precursor for pneumococcal disease. To colonize efficiently, bacteria must adhere to the epithelial-cell surface. possesses surface-associated exoglycosidases that are capable of sequentially deglycosylating human glycans. Two exoglycosidases, neuraminidase (NanA) and β-galactosidase (BgaA), have previously been shown to contribute to adherence to human epithelial cells, as deletion of either of these genes results in reduced adherence. It has been suggested that these enzymes may modulate adherence by cleaving sugars to reveal a receptor on host cells. Pretreatment of epithelial cells with exogenous neuraminidase restores the adherence of a mutant, whereas pretreatment with β-galactosidase does not restore the adherence of a mutant. These data suggest that BgaA may not function to reveal a receptor, and implicate an alternative role for BgaA in adherence. Here we demonstrate that β-galactosidase activity is not required for BgaA-mediated adherence. Addition of recombinant BgaA (rBgaA) to adherence assays and pretreatment of epithelial cells with rBgaA both significantly reduced the level of adherence of the parental strain, but not the BgaA mutant. One possible explanation of these data is that BgaA is acting as an adhesin and that rBgaA is binding to the receptor, preventing bacterial binding. A bead-binding assay demonstrated that BgaA can bind directly to human epithelial cells, supporting the hypothesis that BgaA is an adhesin. Preliminary characterization of the epithelial-cell receptor suggests that it is a glycan in the context of a glycosphingolipid. To further establish the relevance of this adherence mechanism, we demonstrated that BgaA-mediated adherence contributed to adherence of a recent clinical isolate to primary human epithelial cells. Together, these data suggest a novel role for BgaA as an adhesin and suggest that this mechanism could contribute to adherence of at least some pneumococcal strains .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045609-0
2011-08-01
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2369.html?itemId=/content/journal/micro/10.1099/mic.0.045609-0&mimeType=html&fmt=ahah

References

  1. Bader D. E., Ring M., Huber R. E.. ( 1988;). Site-directed mutagenic replacement of glu-461 with gln in β-galactosidase (E. coli): evidence that glu-461 is important for activity. Biochem Biophys Res Commun153:301–306 [CrossRef][PubMed]
    [Google Scholar]
  2. Bagnoli F., Moschioni M., Donati C., Dimitrovska V., Ferlenghi I., Facciotti C., Muzzi A., Giusti F., Emolo C. et al. ( 2008;). A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol190:5480–5492 [CrossRef][PubMed]
    [Google Scholar]
  3. Barthelson R., Mobasseri A., Zopf D., Simon P.. ( 1998;). Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by sialylated oligosaccharides. Infect Immun66:1439–1444[PubMed]
    [Google Scholar]
  4. Bateman A., Holden M. T., Yeats C.. ( 2005;). The G5 domain: a potential N-acetylglucosamine recognition domain involved in biofilm formation. Bioinformatics21:1301–1303 [CrossRef][PubMed]
    [Google Scholar]
  5. Berry A. M., Lock R. A., Thomas S. M., Rajan D. P., Hansman D., Paton J. C.. ( 1994;). Cloning and nucleotide sequence of the Streptococcus pneumoniae hyaluronidase gene and purification of the enzyme from recombinant Escherichia coli . Infect Immun62:1101–1108[PubMed]
    [Google Scholar]
  6. Bongaerts R. J., Heinz H. P., Hadding U., Zysk G.. ( 2000;). Antigenicity, expression, and molecular characterization of surface-located pullulanase of Streptococcus pneumoniae . Infect Immun68:7141–7143 [CrossRef][PubMed]
    [Google Scholar]
  7. Burnaugh A. M., Frantz L. J., King S. J.. ( 2008;). Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol190:221–230 [CrossRef][PubMed]
    [Google Scholar]
  8. Caines M. E., Zhu H., Vuckovic M., Willis L. M., Withers S. G., Wakarchuk W. W., Strynadka N. C.. ( 2008;). The structural basis for T-antigen hydrolysis by Streptococcus pneumoniae: a target for structure-based vaccine design. J Biol Chem283:31279–31283 [CrossRef][PubMed]
    [Google Scholar]
  9. Cámara M., Boulnois G. J., Andrew P. W., Mitchell T. J.. ( 1994;). A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect Immun62:3688–3695[PubMed]
    [Google Scholar]
  10. Cassidy J. T., Jourdian G. W., Roseman S.. ( 1965;). The sialic acids. VI. Purification and properties of sialidase from Clostridium perfringens . J Biol Chem240:3501–3506[PubMed]
    [Google Scholar]
  11. Clarke V. A., Platt N., Butters T. D.. ( 1995;). Cloning and expression of the β-N-acetylglucosaminidase gene from Streptococcus pneumoniae. Generation of truncated enzymes with modified aglycon specificity. J Biol Chem270:8805–8814[PubMed][CrossRef]
    [Google Scholar]
  12. Conrady D. G., Brescia C. C., Horii K., Weiss A. A., Hassett D. J., Herr A. B.. ( 2008;). A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A105:19456–19461 [CrossRef][PubMed]
    [Google Scholar]
  13. Cundell D., Masure H. R., Tuomanen E. I.. ( 1995a;). The molecular basis of pneumococcal infection: a hypothesis. Clin Infect Dis21:(Suppl. 3)S204–S212 [CrossRef][PubMed]
    [Google Scholar]
  14. Cundell D. R., Gerard N. P., Gerard C., Idanpaan-Heikkila I., Tuomanen E. I.. ( 1995b;). Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature377:435–438 [CrossRef][PubMed]
    [Google Scholar]
  15. Cundell D. R., Weiser J. N., Shen J., Young A., Tuomanen E. I.. ( 1995;c). Relationship between colonial morphology and adherence of Streptococcus pneumoniae . Infect Immun63:757–761[PubMed]
    [Google Scholar]
  16. Cundell D. R., Gerard C., Idanpaan-Heikkila I., Tuomanen E. I., Gerard N. P.. ( 1996;). PAf receptor anchors Streptococcus pneumoniae to activated human endothelial cells. Adv Exp Med Biol416:89–94[PubMed]
    [Google Scholar]
  17. Cupples C. G., Miller J. H.. ( 1988;). Effects of amino acid substitutions at the active site in Escherichia coli β-galactosidase. Genetics120:637–644[PubMed]
    [Google Scholar]
  18. Cupples C. G., Miller J. H., Huber R. E.. ( 1990;). Determination of the roles of Glu-461 in β-galactosidase (Escherichia coli) using site-specific mutagenesis. J Biol Chem265:5512–5518[PubMed]
    [Google Scholar]
  19. de Bentzmann S., Roger P., Dupuit F., Bajolet-Laudinat O., Fuchey C., Plotkowski M. C., Puchelle E.. ( 1996;). Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun64:1582–1588[PubMed]
    [Google Scholar]
  20. Denno D. M., Frimpong E., Gregory M., Steele R. W.. ( 2002;). Nasopharyngeal carriage and susceptibility patterns of Streptococcus pneumoniae in Kumasi, Ghana. West Afr J Med21:233–236[PubMed]
    [Google Scholar]
  21. Edwards J. L., Brown E. J., Ault K. A., Apicella M. A.. ( 2001;). The role of complement receptor 3 (CR3) in Neisseria gonorrhoeae infection of human cervical epithelia. Cell Microbiol3:611–622 [CrossRef][PubMed]
    [Google Scholar]
  22. Fine M. J., Smith M. A., Carson C. A., Mutha S. S., Sankey S. S., Weissfeld L. A., Kapoor W. N.. ( 1996;). Prognosis and outcomes of patients with community-acquired pneumonia. A meta-analysis. JAMA275:134–141 [CrossRef][PubMed]
    [Google Scholar]
  23. Gebler J. C., Aebersold R., Withers S. G.. ( 1992;). Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) β-galactosidase from Escherichia coli . J Biol Chem267:11126–11130[PubMed]
    [Google Scholar]
  24. Giefing C., Meinke A. L., Hanner M., Henics T., Bui M. D., Gelbmann D., Lundberg U., Senn B. M., Schunn M. et al. ( 2008;). Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J Exp Med205:117–131 [CrossRef][PubMed]
    [Google Scholar]
  25. Gould J. M., Weiser J. N.. ( 2002;). The inhibitory effect of C-reactive protein on bacterial phosphorylcholine platelet-activating factor receptor-mediated adherence is blocked by surfactant. J Infect Dis186:361–371 [CrossRef][PubMed]
    [Google Scholar]
  26. Gruenert D. C., Finkbeiner W. E., Widdicombe J. H.. ( 1995;). Culture and transformation of human airway epithelial cells. Am J Physiol268:L347–L360[PubMed]
    [Google Scholar]
  27. Hammerschmidt S.. ( 2006;). Adherence molecules of pathogenic pneumococci. Curr Opin Microbiol9:12–20 [CrossRef][PubMed]
    [Google Scholar]
  28. Hammerschmidt S., Wolff S., Hocke A., Rosseau S., Müller E., Rohde M.. ( 2005;). Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun73:4653–4667 [CrossRef][PubMed]
    [Google Scholar]
  29. Henrichsen J.. ( 1995;). Six newly recognized types of Streptococcus pneumoniae . J Clin Microbiol33:2759–2762[PubMed]
    [Google Scholar]
  30. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R.. ( 1989;). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene77:61–68 [CrossRef][PubMed]
    [Google Scholar]
  31. Hoskins J., Alborn W. E. Jr, Arnold J., Blaszczak L. C., Burgett S., DeHoff B. S., Estrem S. T., Fritz L., Fu D. J. et al. ( 2001;). Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol183:5709–5717 [CrossRef][PubMed]
    [Google Scholar]
  32. Iannelli F., Pearce B. J., Pozzi G.. ( 1999;). The type 2 capsule locus of Streptococcus pneumoniae . J Bacteriol181:2652–2654[PubMed]
    [Google Scholar]
  33. Jeong J. K., Kwon O., Lee Y. M., Oh D. B., Lee J. M., Kim S., Kim E. H., Le T. N., Rhee D. K., Kang H. A.. ( 2009;). Characterization of the Streptococcus pneumoniae BgaC protein as a novel surface β-galactosidase with specific hydrolysis activity for the Galβ1–3GlcNAc moiety of oligosaccharides. J Bacteriol191:3011–3023 [CrossRef][PubMed]
    [Google Scholar]
  34. Jin P., Kong F., Xiao M., Oftadeh S., Zhou F., Liu C., Russell F., Gilbert G. L.. ( 2009;). First report of putative Streptococcus pneumoniae serotype 6D among nasopharyngeal isolates from Fijian children. J Infect Dis200:1375–1380 [CrossRef][PubMed]
    [Google Scholar]
  35. Kaufman G. E., Yother J.. ( 2007;). CcpA-dependent and -independent control of β-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon. J Bacteriol189:5183–5192 [CrossRef][PubMed]
    [Google Scholar]
  36. Kharat A. S., Tomasz A.. ( 2003;). Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect Immun71:2758–2765 [CrossRef][PubMed]
    [Google Scholar]
  37. Kim J. O., Weiser J. N.. ( 1998;). Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae . J Infect Dis177:368–377 [CrossRef][PubMed]
    [Google Scholar]
  38. Kim J. O., Romero-Steiner S., Sørensen U. B., Blom J., Carvalho M., Barnard S., Carlone G., Weiser J. N.. ( 1999;). Relationship between cell surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae . Infect Immun67:2327–2333[PubMed]
    [Google Scholar]
  39. King S. J.. ( 2010;). Pneumococcal modification of host sugars: a major contributor to colonization of the human airway?. Mol Oral Microbiol25:15–24 [CrossRef][PubMed]
    [Google Scholar]
  40. King S. J., Hippe K. R., Gould J. M., Bae D., Peterson S., Cline R. T., Fasching C., Janoff E. N., Weiser J. N.. ( 2004;). Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol Microbiol54:159–171 [CrossRef][PubMed]
    [Google Scholar]
  41. King S. J., Hippe K. R., Weiser J. N.. ( 2006;). Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae . Mol Microbiol59:961–974 [CrossRef][PubMed]
    [Google Scholar]
  42. Krivan H. C., Roberts D. D., Ginsburg V.. ( 1988;). Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc Natl Acad Sci U S A85:6157–6161 [CrossRef][PubMed]
    [Google Scholar]
  43. Lanie J. A., Ng W. L., Kazmierczak K. M., Andrzejewski T. M., Davidsen T. M., Wayne K. J., Tettelin H., Glass J. I., Winkler M. E.. ( 2007;). Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol189:38–51 [CrossRef][PubMed]
    [Google Scholar]
  44. Leiberman A., Leibovitz E., Piglansky L., Raiz S., Press J., Yagupsky P., Dagan R.. ( 2001;). Bacteriologic and clinical efficacy of trimethoprim–sulfamethoxazole for treatment of acute otitis media. Pediatr Infect Dis J20:260–264 [CrossRef][PubMed]
    [Google Scholar]
  45. Marchler-Bauer A., Anderson J. B., Derbyshire M. K., DeWeese-Scott C., Gonzales N. R., Gwadz M., Hao L., He S., Hurwitz D. I. et al. ( 2007;). CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res35:Database issueD237–D240 [CrossRef][PubMed]
    [Google Scholar]
  46. McCool T. L., Weiser J. N.. ( 2004;). Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonization. Infect Immun72:5807–5813 [CrossRef][PubMed]
    [Google Scholar]
  47. Moschioni M., Donati C., Muzzi A., Masignani V., Censini S., Hanage W. P., Bishop C. J., Reis J. N., Normark S. et al. ( 2008;). Streptococcus pneumoniae contains 3 rlrA pilus variants that are clonally related. J Infect Dis197:888–896 [CrossRef][PubMed]
    [Google Scholar]
  48. Muramatsu H., Tachikui H., Ushida H., Song X., Qiu Y., Yamamoto S., Muramatsu T.. ( 2001;). Molecular cloning and expression of endo-β-N-acetylglucosaminidase D, which acts on the core structure of complex type asparagine-linked oligosaccharides. J Biochem129:923–928[PubMed][CrossRef]
    [Google Scholar]
  49. Paterson G. K., Mitchell T. J.. ( 2006;). The role of Streptococcus pneumoniae sortase A in colonisation and pathogenesis. Microbes Infect8:145–153 [CrossRef][PubMed]
    [Google Scholar]
  50. Richard J. P., Huber R. E., Lin S., Heo C., Amyes T. L.. ( 1996;). Structure–reactivity relationships for β-galactosidase (Escherichia coli, lac Z). 3. Evidence that Glu-461 participates in Brønsted acid–base catalysis of β-d-galactopyranosyl group transfer. Biochemistry35:12377–12386 [CrossRef][PubMed]
    [Google Scholar]
  51. Robertson G. T., Ng W. L., Foley J., Gilmour R., Winkler M. E.. ( 2002;). Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J Bacteriol184:3508–3520 [CrossRef][PubMed]
    [Google Scholar]
  52. Romero-Steiner S., Caba J., Rajam G., Langley T., Floyd A., Johnson S. E., Sampson J. S., Carlone G. M., Ades E.. ( 2006;). Adherence of recombinant pneumococcal surface adhesin A (rPsaA)-coated particles to human nasopharyngeal epithelial cells for the evaluation of anti-PsaA functional antibodies. Vaccine24:3224–3231 [CrossRef][PubMed]
    [Google Scholar]
  53. Song X. M., Connor W., Hokamp K., Babiuk L. A., Potter A. A.. ( 2008;). Streptococcus pneumoniae early response genes to human lung epithelial cells. BMC Res Notes1:64 [CrossRef][PubMed]
    [Google Scholar]
  54. Stoner G. D., Kikkawa Y., Kniazeff A. J., Miyai K., Wagner R. M.. ( 1975;). Clonal isolation of epithelial cells from mouse lung adenoma. Cancer Res35:2177–2185[PubMed]
    [Google Scholar]
  55. Sung C. K., Li H., Claverys J. P., Morrison D. A.. ( 2001;). An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae . Appl Environ Microbiol67:5190–5196 [CrossRef][PubMed]
    [Google Scholar]
  56. Tettelin H., Nelson K. E., Paulsen I. T., Eisen J. A., Read T. D., Peterson S., Heidelberg J., DeBoy R. T., Haft D. H. et al. ( 2001;). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science293:498–506 [CrossRef][PubMed]
    [Google Scholar]
  57. Tong H. H., McIver M. A., Fisher L. M., DeMaria T. F.. ( 1999;). Effect of lacto-N-neotetraose, asialoganglioside-GM1 and neuraminidase on adherence of otitis media-associated serotypes of Streptococcus pneumoniae to chinchilla tracheal epithelium. Microb Pathog26:111–119 [CrossRef][PubMed]
    [Google Scholar]
  58. Uchiyama S., Carlin A. F., Khosravi A., Weiman S., Banerjee A., Quach D., Hightower G., Mitchell T. J., Doran K. S., Nizet V.. ( 2009;). The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. J Exp Med206:1845–1852 [CrossRef][PubMed]
    [Google Scholar]
  59. Umemoto J., Bhavanandan V. P., Davidson E. A.. ( 1977;). Purification and properties of an endo-α-N-acetyl-d-galactosaminidase from Diplococcus pneumoniae . J Biol Chem252:8609–8614[PubMed]
    [Google Scholar]
  60. Vickerman M. M., Iobst S., Jesionowski A. M., Gill S. R.. ( 2007;). Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J Bacteriol189:7799–7807 [CrossRef][PubMed]
    [Google Scholar]
  61. Watson D. A., Musher D. M.. ( 1990;). Interruption of capsule production in Streptococcus pneumoniae serotype 3 by insertion of transposon Tn916. Infect Immun58:3135–3138[PubMed]
    [Google Scholar]
  62. Watt J. P., O’Brien K. L., Katz S., Bronsdon M. A., Elliott J., Dallas J., Perilla M. J., Reid R., Murrow L. et al. ( 2004;). Nasopharyngeal versus oropharyngeal sampling for detection of pneumococcal carriage in adults. J Clin Microbiol42:4974–4976 [CrossRef][PubMed]
    [Google Scholar]
  63. Whatmore A. M., Barcus V. A., Dowson C. G.. ( 1999;). Genetic diversity of the streptococcal competence (com) gene locus. J Bacteriol181:3144–3154[PubMed]
    [Google Scholar]
  64. Zähner D., Hakenbeck R.. ( 2000;). The Streptococcus pneumoniae β-galactosidase is a surface protein. J Bacteriol182:5919–5921 [CrossRef][PubMed]
    [Google Scholar]
  65. Zartler E. R., Porambo R. J., Anderson C. L., Chen L. H., Yu J., Nahm M. H.. ( 2009;). Structure of the capsular polysaccharide of pneumococcal serotype 11A reveals a novel acetylglycerol that is the structural basis for 11A subtypes. J Biol Chem284:7318–7329 [CrossRef][PubMed]
    [Google Scholar]
  66. Zeleny R., Altmann F., Praznik W.. ( 1997;). A capillary electrophoretic study on the specificity of β-galactosidases from Aspergillus oryzae, Escherichia coli, Streptococcus pneumoniae, and Canavalia ensiformis (jack bean). Anal Biochem246:96–101 [CrossRef][PubMed]
    [Google Scholar]
  67. Zhang J. R., Mostov K. E., Lamm M. E., Nanno M., Shimida S., Ohwaki M., Tuomanen E.. ( 2000;). The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell102:827–837 [CrossRef][PubMed]
    [Google Scholar]
  68. Zysk G., Bongaerts R. J., ten Thoren E., Bethe G., Hakenbeck R., Heinz H. P.. ( 2000;). Detection of 23 immunogenic pneumococcal proteins using convalescent-phase serum. Infect Immun68:3740–3743 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045609-0
Loading
/content/journal/micro/10.1099/mic.0.045609-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error