1887

Abstract

The opportunistic pathogen produces the siderophores ornibactin and pyochelin under iron-restricted conditions. Biosynthesis of both siderophores requires the involvement of non-ribosomal peptide synthetases (NRPSs). Using a transposon containing the reporter gene, two mutants were isolated which were deficient in siderophore production. Mutant IW10 was shown to produce normal amounts of ornibactin but only trace amounts of pyochelin, whereas synthesis of both siderophores was abolished in AHA27. Growth of AHA27, but not IW10, was inhibited under iron-restricted conditions. In both mutants, the transposon had integrated into the gene, which encodes a polypeptide exhibiting similarity to the Sfp-type phosphopantetheinyltransferases (PPTases). These enzymes are responsible for activation of NRPSs by the covalent attachment of the 4′-phosphopantetheine (P-pant) moiety of coenzyme A. Previously characterized PPTase genes from other bacteria were shown to efficiently complement both mutants for siderophore production when provided . The gene was also able to efficiently complement an mutant for production of the siderophore enterobactin. Using mutant IW10, in which the gene carried by the transposon is inserted in the same orientation as , it was shown that is not appreciably iron-regulated. Finally, we confirmed that Sfp-type bacterial PPTases can be subdivided into two distinct groups, and we present the amino acid signature sequences which characterize each of these groups.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045559-0
2011-02-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/349.html?itemId=/content/journal/micro/10.1099/mic.0.045559-0&mimeType=html&fmt=ahah

References

  1. Agnoli K., Lowe C. A., Farmer K. L., Husnain S. I., Thomas M. S.. 2006; The ornibactin biosynthesis and transport genes of Burkholderia cenocepacia are regulated by an ECF σ factor which is a part of the Fur regulon. J Bacteriol188:3631–3644
    [Google Scholar]
  2. Ankenbauer R. G., Toyokuni T., Staley A., Rinehart K. L. Jr, Cox C. D.. 1988; Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. J Bacteriol170:5344–5351
    [Google Scholar]
  3. Barekzi N., Joshi S., Irwin S., Ontl T., Schweizer H. P.. 2004; Genetic characterization of pcpS , encoding the multifunctional phosphopantetheinyl transferase of Pseudomonas aeruginosa. Microbiology150:795–803
    [Google Scholar]
  4. Black T. A., Wolk C. P.. 1994; Analysis of a Het mutation in Anabaena sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing. J Bacteriol176:2282–2292
    [Google Scholar]
  5. Braun V.. 2001; Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol291:67–79
    [Google Scholar]
  6. Brown M. R. W., Anwar H., Lambert P. A.. 1984; Evidence that mucoid Pseudomonas aeruginosa in the cystic fibrosis lung grows under iron-restricted conditions. FEMS Microbiol Lett21:113–117
    [Google Scholar]
  7. Casadaban M. J., Cohen S. N.. 1980; Analysis of gene control signals by DNA fusion and cloning in E. coli. J Mol Biol138:179–207
    [Google Scholar]
  8. Challis G. L., Naismith J. H.. 2004; Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol14:748–756
    [Google Scholar]
  9. Clowes R. C., Hayes W.. 1968; Experiments in Microbial Genetics Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  10. Coenye T., Vandamme P., Govan J. R. W., LiPuma J. J.. 2001; Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol39:3427–3436
    [Google Scholar]
  11. Compant S., Nowak J., Coenye T., Clement C., Barka E. A.. 2008; Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev32:607–626
    [Google Scholar]
  12. Copp J. N., Neilan B. A.. 2006; The phosphopantetheinyl transferase superfamily: phylogenetic analysis and functional implications in cyanobacteria. Appl Environ Microbiol72:2298–2305
    [Google Scholar]
  13. Cox G. B., Gibson F., Luke R. K. J., Newton N. A., O'Brien I. G., Rosenberg H.. 1970; Mutations affecting iron transport in Escherichia coli. J Bacteriol104:219–226
    [Google Scholar]
  14. Crosa J. H., Walsh C. T.. 2002; Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev66:223–249
    [Google Scholar]
  15. Darling P., Chan M., Cox A. D., Sokol P. A.. 1998; Siderophore production by cystic fibrosis isolates of Burkholderia cepacia.. Infect Immun66:874–877
    [Google Scholar]
  16. de Lorenzo V., Timmis K. N.. 1994; Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn 5 - and Tn 10 -derived minitransposons. Methods Enzymol235:386–405
    [Google Scholar]
  17. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N.. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol172:6568–6572
    [Google Scholar]
  18. Dennis J. J., Zylstra G. J.. 1998; Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol64:2710–2715
    [Google Scholar]
  19. DeShazer D., Woods D. E.. 1996; Broad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene. Biotechniques20:762–764
    [Google Scholar]
  20. Farmer K. L., Thomas M. S.. 2004; Isolation and characterization of Burkholderia cenocepacia mutants deficient in pyochelin production: pyochelin biosynthesis is sensitive to sulphur availability. J Bacteriol186:270–277
    [Google Scholar]
  21. Fellay R., Frey J., Krisch H.. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene52:147–154
    [Google Scholar]
  22. Finking R., Solsbacher J., Konz D., Schobert M., Schafer A., Jahn D., Marahiel M. A.. 2002; Characterization of a new type of phosphopantetheinyl transferase for fatty acid and siderophore synthesis in Pseudomonas aeruginosa. J Biol Chem277:50293–50302
    [Google Scholar]
  23. Flugel R. S., Hwangbo Y., Lambalot R. H., Cronan J. E., Walsh C. T.. 2000; Holo-(acyl carrier protein) synthase and phosphopantetheinyl transfer in Escherichia coli. J Biol Chem275:959–968
    [Google Scholar]
  24. Gehring A. M., Lambalot R. H., Vogel K. W., Drueckhammer D. G., Walsh C. T.. 1997; Ability of Streptomyces species acyl carrier proteins and coenzyme A to serve as substrates in vitro for E. coli holo-ACP synthase. Chem Biol4:17–24
    [Google Scholar]
  25. Gray-Owen S. D., Schryvers A. B.. 1996; Bacterial transferrin and lactoferrin receptors. Trends Microbiol4:185–191
    [Google Scholar]
  26. Grossman T. H., Tuckman M., Ellestad S., Osburne M. S.. 1993; Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfp 0 and Escherichia coli entD genes. J Bacteriol175:6203–6211
    [Google Scholar]
  27. Heerklotz H., Seelig J.. 2001; Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophys J81:1547–1554
    [Google Scholar]
  28. Herrero M., de Lorenzo V., Timmis K. N.. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol172:6557–6567
    [Google Scholar]
  29. Holden M. T. G., Seth-Smith H. M. B., Crossman L. C., Sebaihia M., Bentley S. D., Cerdeno-Tarraga A. M., Thomson N. R., Bason N., Quail M. A.. other authors 2009; The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol191:261–277
    [Google Scholar]
  30. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M.. other authors 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res3109–136
    [Google Scholar]
  31. Koedam N., Wittouck E., Gaballa A., Gillis A., Hofte M., Cornelis P.. 1994; Detection and differentiation of microbial siderophores by isoelectric focusing and chrome azurol S overlay. Biometals7:287–291
    [Google Scholar]
  32. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M.. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques16:800–802
    [Google Scholar]
  33. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176
    [Google Scholar]
  34. Kumar S., Tamura K., Nei M.. 2004; mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform5:150–163
    [Google Scholar]
  35. Lambalot R. H., Walsh C. T.. 1995; Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J Biol Chem270:24658–24661
    [Google Scholar]
  36. Lambalot R. H., Gehring A. M., Flugel R. S., Zuber P., LaCelle M., Marahiel M. A., Reid R., Khosla C., Walsh C. T.. 1996; A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol3:923–936
    [Google Scholar]
  37. LiPuma J. J.. 1998; Burkholderia cepacia -management issues and new insights. Clin Chest Med19:473–486
    [Google Scholar]
  38. Lu Y.-W., San Roman A. K., Gehring A. M.. 2008; Role of phosphopantetheinyl transferase genes in antibiotic production by Streptomyces coelicolor. J Bacteriol190:6903–6908
    [Google Scholar]
  39. Mahenthiralingam E., Baldwin A., Vandamme P.. 2002; Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol51:533–538
    [Google Scholar]
  40. Mahenthiralingam E., Urban T. A., Goldberg J. B.. 2005; The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol3:144–156
    [Google Scholar]
  41. Mahenthiralingam E., Baldwin A., Dowson C. G.. 2008; Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol104:1539–1551
    [Google Scholar]
  42. Marahiel M. A., Stachehaus T., Mootz H. D.. 1997; Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev97:2651–2674
    [Google Scholar]
  43. May J. J., Wendrich T. M., Marahiel M. A.. 2001; The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydrobenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem276:7209–7217
    [Google Scholar]
  44. Metcalf W. W., Jiang W., Wanner B. L.. 1994; Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6K γ origin plasmids at different copy numbers. Gene138:1–7
    [Google Scholar]
  45. Meyer J.-M., Van V. T., Stintzi A., Berge O., Winkelmann G.. 1995; Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia . Biometals8:309–317
    [Google Scholar]
  46. Miller J.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  47. Mootz H. D., Finking R., Marahiel M. A.. 2001; 4′-Phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J Biol Chem276:37289–37298
    [Google Scholar]
  48. Nakano M. M., Corbell N., Besson J., Zuber P.. 1992; Isolation and characterization of sfp : a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet232:313–321
    [Google Scholar]
  49. Quadri L. E. N.. 2000; Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthetases. Mol Microbiol37:1–12
    [Google Scholar]
  50. Quadri L. E. N., Sello J., Keating T. A., Weinreb P. H., Walsh C. T.. 1998a; Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol5:631–645
    [Google Scholar]
  51. Quadri L. E. N., Weinreb P. H., Lei M., Nakano M. M., Zuber P., Walsh C. T.. 1998b; Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry37:1585–1595
    [Google Scholar]
  52. Quadri L. E. N., Keating T. A., Patel H. M., Walsh C. T.. 1999; Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4,2-bisthiazoline synthetase activity from PchD. PchE and PchF. Biochemistry38:14941–14954
    [Google Scholar]
  53. Reik R., Spilker T., LiPuma J. L.. 2005; Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol43:2926–2928
    [Google Scholar]
  54. Reimmann C., Serino L., Beyeler M., Haas D.. 1998; Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes are induced by extracellular pyochelin in Pseudomonas aeruginosa. Microbiology144:3135–3148
    [Google Scholar]
  55. Reimmann C., Patel H. M., Serino L., Barone M., Walsh C. T., Haas D.. 2001; Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J Bacteriol183:813–820
    [Google Scholar]
  56. Reuter K., Mofid M. R., Marahiel M. A., Ficner R.. 1999; Crystal structure of the surfactin synthetase-activating enzyme Sfp: a prototype of the 4′-phosphopantetheinyl transferase superfamily. EMBO J18:6823–6831
    [Google Scholar]
  57. Rinehart K. L., Staley A. L., Wilson S. R., Ankenbauer R. G., Cox C. D.. 1995; Stereochemical assignment of the pyochelins. J Org Chem60:2786–2791
    [Google Scholar]
  58. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular cloning: a laboratory manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  59. Sanchez C., Du L., Edwards D. J., Toney M. D., Shen B.. 2001; Cloning and characterization of a phosphopantetheinyl transferase from Streptomyces verticillus ATCC15003, the producer of the hybrid peptide-polyketide antitumor drug bleomycin. Chem Biol8:725–738
    [Google Scholar]
  60. Schlegel K., Taraz K., Budzikiewicz H.. 2004; The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa. Biometals17:409–414
    [Google Scholar]
  61. Schwyn B., Neilands J. B.. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem160:47–56
    [Google Scholar]
  62. Sieber S. A., Marahiel M. A.. 2003; Learning from nature's drug factories: nonribosomal synthesis of macrocyclic peptides. J Bacteriol185:7036–7043
    [Google Scholar]
  63. Sieber S. A., Marahiel M. A.. 2005; Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev105:715–738
    [Google Scholar]
  64. Simon R., Priefer U., Puhler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nat Biotechnol1:784–791
    [Google Scholar]
  65. Sokol P. A.. 1986; Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia. J Clin Microbiol23:560–562
    [Google Scholar]
  66. Sokol P. A., Woods D. E.. 1988; Effect of pyochelin on Pseudomonas cepacia respiratory infection. Microb Pathog5:197–205
    [Google Scholar]
  67. Sokol P. A., Lewis C. J., Dennis J. J.. 1992; Isolation of a novel siderophore from Pseudomonas cepacia. J Med Microbiol36:184–189
    [Google Scholar]
  68. Sokol P. A., Darling P., Woods D. E., Mahenthiralingam E., Kooi C.. 1999; Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia : characterization of pvdA , the gene encoding l-ornithine N 5-oxygenase. Infect Immun67:4443–4455
    [Google Scholar]
  69. Sokol P. A., Darling P., Lewenza S., Corbett C. R., Kooi C. D.. 2000; Identification of a siderophore receptor required for ferric ornibactin uptake in Burkholderia cepacia. Infect Immun68:6554–6560
    [Google Scholar]
  70. Sousa S. A., Ramos C. G., Almeida F., Meirinhos-Soares L., Wopperer J., Schwager S., Eberl L., Leitao J. H.. 2008; Burkholderia cenocepacia J2315 acyl carrier protein: a potential target for antimicrobials’ development. Microb Pathog45:331–336
    [Google Scholar]
  71. Speert D. P.. 2002; Advances in Burkholderia cepacia complex. Paediatr Respir Rev3:230–235
    [Google Scholar]
  72. Stephan H., Freund S., Beck W., Jung G., Meyer J.-M., Winkelmann G.. 1993; Ornibactins – a new family of siderophores from Pseudomonas cepacia. Biometals6:93–100
    [Google Scholar]
  73. Thomas M. S.. 2007; Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals20:431–452
    [Google Scholar]
  74. Thompson A. B., Bohling T., Payvandi F., Rennard S. I.. 1990; Lower respiratory tract lactoferrin and lysozyme arise primarily in the airways and are elevated in association with chronic bronchitis. J Lab Clin Med115:148–158
    [Google Scholar]
  75. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  76. Uehlinger S., Schwager S., Bernier S. P., Riedel K., Nguyen D. T., Sokol P. A., Eberl L.. 2009; Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infect Immun77:4102–4110
    [Google Scholar]
  77. Vandamme P., Holmes B., Vancanneyt M., Coenye T., Hoste B., Coopman R., Revets H., Lauwers S., Gillis M.. other authors 1997; Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol47:1188–1200
    [Google Scholar]
  78. Visca P., Ciervo A., Sanfilippo V., Orsi N.. 1993; Iron-regulated salicylate synthesis by Pseudomonas spp. J Gen Microbiol139:1995–2001
    [Google Scholar]
  79. Visser M. B., Majumdar S., Hani E., Sokol P. A.. 2004; Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun72:2850–2857
    [Google Scholar]
  80. Walsh C. T., Gehring A. M., Weinreb P. H., Quadri L. E. N., Flugel R. S.. 1997; Post-translational modification of polyketide and nonribosomal peptide synthases. Curr Opin Chem Biol1:309–315
    [Google Scholar]
  81. Wang J., Lory S., Ramphal R., Jin S.. 1996; Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol Microbiol22:1005–1012
    [Google Scholar]
  82. Wang L., McVey J., Vining L. C.. 2001; Cloning and functional analysis of a phosphopantetheinyl transferase superfamily gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230. Microbiology147:1535–1545
    [Google Scholar]
  83. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045559-0
Loading
/content/journal/micro/10.1099/mic.0.045559-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error