Deletion of the histone-like protein (Hlp) from results in increased sensitivity to UV exposure, freezing and isoniazid Free

Abstract

Adaptation to environmental stress is an important survival characteristic of any bacterial species. As a soil-dwelling saprophyte, is exposed to factors such as UV light and rounds of freezing and thawing that occur in temperate climates. Numerous studies in have linked histone-like proteins to stress resistance and adaptation. We hypothesized that the ‘histone-like’ protein Hlp might likewise be involved in the stress response of . The gene was inactivated and the Δ strain was found to be more susceptible to UV light and to the stress created by repeated cycles of freezing and thawing. In addition, loss of Hlp altered the colony morphology and allowed the organism to grow dispersed in the absence of a detergent, suggesting changes in the cell wall composition. As cell wall changes could affect permeability to certain antibiotics, the susceptibility of Δ to kanamycin, rifamipicin, ethambutol and isoniazid (INH) was tested. Δ was more susceptible to INH, but loss of Hlp did not affect susceptibility to the other antibiotics tested. This suggests that the increased sensitivity of Δ to INH was unlikely to be the result of alterations in cell permeability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045518-0
2011-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/327.html?itemId=/content/journal/micro/10.1099/mic.0.045518-0&mimeType=html&fmt=ahah

References

  1. Aoki K., Matsumoto S., Hirayama Y., Wada T., Ozeki Y., Niki M., Domenech P., Umemori K., Yamamoto S. other authors 2004; Extracellular mycobacterial DNA-binding protein 1 participates in Mycobacterium –lung epithelial cell interaction through hyaluronic acid. J Biol Chem 279:39798–39806
    [Google Scholar]
  2. Arfin S. M., Long A. D., Ito E. T., Tolleri L., Riehle M. M., Paegle E. S., Hatfield G. W. 2000; Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J Biol Chem 275:29672–29684
    [Google Scholar]
  3. Arora K., Whiteford D. C., Lau-Bonilla D., Davitt C. M., Dahl J. L. 2008; Inactivation of lsr2 results in a hypermotile phenotype in Mycobacterium smegmatis . J Bacteriol 190:4291–4300
    [Google Scholar]
  4. Bi H., Sun L., Fukamachi T., Saito H., Kobayashi H. 2009; HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli . Curr Microbiol 58:443–448
    [Google Scholar]
  5. Brennan P. J., Nikaido H. 1995; The envelope of mycobacteria. Annu Rev Biochem 64:29–63
    [Google Scholar]
  6. Chen J. M., German G. J., Alexander D. C., Ren H., Tan T., Liu J. 2006; Roles of Lse2 in colony morphology and biofilm formation of Mycobacterium smegmatis . J Bacteriol 188:633–641
    [Google Scholar]
  7. Claret L., Rouviere-Yaniv J. 1997; Variation in HU composition during growth of Escherichia coli : the heterodimer is required for long-term survival. J Mol Biol 273:93–104
    [Google Scholar]
  8. Colangeli R., Helb D., Vilcheze C., Hazbon M. H., Lee C.-G., Safi H., Sayers B., Sardone I., Jones M. B. other authors 2007; Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis . PLoS Pathog 3:e87
    [Google Scholar]
  9. Dahl J. L., Kraus C. N., Boshoff H. I., Doan B., Foley K., Avarbock D., Kaplan G., Mizrahi V., Rubin H., Barry C. E. III: 2003; The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A 100:10026–10031
    [Google Scholar]
  10. Duwat P., Cochu A., Ehrlich S. D., Gruss A. 1997; Characterization of Lactococcus lactis UV-sensitive mutants obtained by IS S1 transposition. J Bacteriol 179:4473–4479
    [Google Scholar]
  11. Gomez Zavaglia A., Disalvo E. A., de Antoni G. L. 2000; Fatty acid composition and freeze–thaw resistance in lactobacilli. J Dairy Res 67:241–247
    [Google Scholar]
  12. Güthlein C., Wanner R. M., Sander P., Bottger E. C., Springer B. 2008; A mycobacterial smc null mutant is proficient in DNA repair and long-term survival. J Bacteriol 190:452–456
    [Google Scholar]
  13. Jackson M., Raynaud C., Lanéelle A., Guilhot C., Laurent-Winter C., Ensergueix D., Gicquel B., Daffé M. 1999; Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31:1573–1587
    [Google Scholar]
  14. Jacobs W. R. Jr, Tuckman M., Bloom B. R. 1987; Introduction of foreign DNA into mycobacteria using a shuttle plasmid. Nature 327:532–535
    [Google Scholar]
  15. Katsube T., Matsumoto S., Takatsuka M., Okuyama M., Ozeki Y., Naito M., Nishiuchi Y., Fujiwara N., Yoshimura M. other authors 2007; Control of cell wall assembly by a histone-like protein in mycobacteria. J Bacteriol 189:8241–8249
    [Google Scholar]
  16. Kazda J. 2000 The Ecology of Mycobacteria Dordrecht, The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  17. Lee B. H., Murugasu-Oci B., Dick T. 1998; Upregulation of a histone-like protein in dormant Mycobacterium smegmatis . Mol Gen Genet 260:475–479
    [Google Scholar]
  18. Lewin A., Daniela B., Kamal E., Bon F., Kunisch R., Maurischat S., Adonopoulou M., Eich K. 2008; The mycobacterial DNA-binding protein MDP1 from Mycobacterium bovis BCG influences various growth characteristics. BMC Microbiol 8:91–102
    [Google Scholar]
  19. Li S., Waters R. 1998; Escherichia coli strains lacking protein HU are UV sensitive due to a role of HU in homologous recombination. J Bacteriol 180:3750–3756
    [Google Scholar]
  20. Matsumoto S., Furugen M., Yukitake H., Yamada T. 2000; The gene encoding mycobacterial DNA-binding protein I (MDPI) transformed rapidly growing bacteria to slowly growing bacteria. FEMS Microbiol Lett 182:297–301
    [Google Scholar]
  21. Miyabe I., Zhang Q. M., Kano Y., Yonei S. 2000; Histone-like protein HU is required for recA gene-dependent DNA repair and SOS induction pathways in UV-irradiated Escherichia coli . Int J Radiat Biol 76:43–49
    [Google Scholar]
  22. Mukherjee A., Bhattacharyya G., Grove A. 2008; The C-terminal domain of HU-related histone-like protein Hlp from Mycobacterium smegmatis mediates DNA end-joining. Biochemistry 47:8744–8753
    [Google Scholar]
  23. O'Brien L. M., Gordon S. V., Roberts I. S., Andrew P. W. 1996; Response of Mycobacterium smegmatis to acid stress. FEMS Microbiol Lett 139:11–17
    [Google Scholar]
  24. Ojha A., Anand M., Bhatt A., Kremer L., Jacobs W. R. Jr, Hatfull G. F. 2005; GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873
    [Google Scholar]
  25. Parekh B. S., Hatfield G. W. 1996; Transcriptional activation by protein-induced DNA bending: evidence for a DNA structural transmission model. Proc Natl Acad Sci U S A 93:1173–1177
    [Google Scholar]
  26. Parish T., Stoker N. G. 2000; Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146:1969–1975
    [Google Scholar]
  27. Prabhakar S., Annapurna P. S., Jain N. K., Dey A. B., Tyagi J. S., Prasad H. K. 1998; Identification of an immunogenic histone-like protein (HLPMtb) of Mycobacterium tuberculosis . Tuber Lung Dis 79:43–53
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sassetti C. M., Boyd D. H., Rubin E. J. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84
    [Google Scholar]
  30. Shires K., Steyn L. 2001; The cold-shock stress response in Mycobacterium smegmatis induces the expression of a histone-like protein. Mol Microbiol 39:994–1009
    [Google Scholar]
  31. Soares de Lima C., Zulianello L., de Melo Marques M. A., Kim H., Portugal M. I., Antunes S. L., Menozzi F. D., Ottenhoff T. H., Brennan P. J., Pessolani M. C. 2005; Mapping the laminin-binding and adhesive domain of the cell surface-associated Hlp/LBP protein from Mycobacterium leprae . Microbes Infect 7:1097–1109
    [Google Scholar]
  32. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H. other authors 1991; New use of BCG for recombinant vaccines. Nature 351:456–460
    [Google Scholar]
  33. Sun Z., Zhang Y. 1999; Spent culture supernatant of Mycobacterium tuberculosis H37Ra improves viability of aged cultures of this strain and allows small inocula to initiate growth. J Bacteriol 181:7626–7628
    [Google Scholar]
  34. Swinger K. K., Rice P. A. 2004; IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 14:28–35
    [Google Scholar]
  35. Tanghe A., Van Dijck P., Thevelein J. M. 2003; Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129–176
    [Google Scholar]
  36. Thanbichler M., Wang S. C., Shapiro L. 2005; The bacterial nucleoid: a highly organized and dynamic structure. J Cell Biochem 96:506–521
    [Google Scholar]
  37. Wada M., Kano Y., Ogawa T., Okazaki T., Imamoto F. 1988; Construction and characterization of the deletion mutant of hupA and hupB genes in Escherichia coli . J Mol Biol 204:581–591
    [Google Scholar]
  38. Wallace R. J. Jr, Nash D. R., Steele L. C., Steingrube V. 1986; Susceptibility testing of slowly growing mycobacteria by a microdilution MIC method with 7H9 broth. J Clin Microbiol 24:976–981
    [Google Scholar]
  39. Wei J., Dahl J. L., Moulder J. W., Roberts E. A., O'Gaora P., Young D. B., Friedman R. L. 2000; Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J Bacteriol 182:377–384
    [Google Scholar]
  40. Yeruva V. C., Duggirala S., Lakshmi V., Kolarich D., Altmann F., Sritharan M. 2006; Identification and characterization of a major cell wall-associated iron-regulated envelope protein (Irep-28) in Mycobacterium tuberculosis . Clin Vaccine Immunol 13:1137–1142
    [Google Scholar]
  41. Zhang Y., Telenti A. 2000; Genetics of drug resistance in Mycobacterium tuberculosis . In Molecular Genetics of Mycobacteria pp 235–254 Edited by Hatfull G. F., Jacobs W. R. Jr Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Zhang Y., Dhandayuthapani S., Deretic V. 1996; Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc Natl Acad Sci U S A 93:13212–13216
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045518-0
Loading
/content/journal/micro/10.1099/mic.0.045518-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed